00. Temperature and Measurement of Temperature (Thermometer)
Thermal Properties of Matter

146463 Two bodies $A$ and $B$ of equal surface area have thermal emissivity of 0.01 and 0.81 respectively. The two bodies are radiating energy from the two bodies $A$ and $B$ at wavelengths $\lambda_{A}$ and $\lambda_{B}$ respectively. Different in these two wavelengths is $1 \mu \mathrm{m}$. If the temperature of the body $A$ is $5802 \mathrm{~K}$, then value of $\lambda_{B}$ is

1 $\frac{1}{2} \mu \mathrm{m}$
2 $1 \mu$
3 $2 \mu$
4 $\frac{3}{2} \mu \mathrm{m}$
Thermal Properties of Matter

146464 Efficiency of a heat engine whose sink is at temperature of $300 \mathrm{~K}$ is $40 \%$. To increase the efficiency to $60 \%$, keeping the sink temperature constant, the source temperature must be increased by

1 $750 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $250 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermal Properties of Matter

146465 A tap supplies water at $10{ }^{\circ} \mathrm{C}$ and another tap supplies hot water at $100{ }^{\circ} \mathrm{C}$. How much hot water must be taken so that we get $20 \mathrm{~kg}$ of water at $35{ }^{\circ} \mathrm{C}$.

1 $\frac{40}{9} \mathrm{~kg}$
2 $\frac{50}{9} \mathrm{~kg}$
3 $\frac{20}{9} \mathrm{~kg}$
4 $\frac{60}{9} \mathrm{~kg}$
Thermal Properties of Matter

146466 In a thermocouple the temperature of the cold junction is $\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}$ and the neutral temperature is $T_{n}{ }^{\circ} \mathrm{C}$. Then the inversion temperature $T_{i}{ }^{\circ} \mathrm{C}$ is

1 $\left(2 \mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
2 $\left(\mathrm{T}_{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
3 $\left(\frac{\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
4 $\left(\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146463 Two bodies $A$ and $B$ of equal surface area have thermal emissivity of 0.01 and 0.81 respectively. The two bodies are radiating energy from the two bodies $A$ and $B$ at wavelengths $\lambda_{A}$ and $\lambda_{B}$ respectively. Different in these two wavelengths is $1 \mu \mathrm{m}$. If the temperature of the body $A$ is $5802 \mathrm{~K}$, then value of $\lambda_{B}$ is

1 $\frac{1}{2} \mu \mathrm{m}$
2 $1 \mu$
3 $2 \mu$
4 $\frac{3}{2} \mu \mathrm{m}$
Thermal Properties of Matter

146464 Efficiency of a heat engine whose sink is at temperature of $300 \mathrm{~K}$ is $40 \%$. To increase the efficiency to $60 \%$, keeping the sink temperature constant, the source temperature must be increased by

1 $750 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $250 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermal Properties of Matter

146465 A tap supplies water at $10{ }^{\circ} \mathrm{C}$ and another tap supplies hot water at $100{ }^{\circ} \mathrm{C}$. How much hot water must be taken so that we get $20 \mathrm{~kg}$ of water at $35{ }^{\circ} \mathrm{C}$.

1 $\frac{40}{9} \mathrm{~kg}$
2 $\frac{50}{9} \mathrm{~kg}$
3 $\frac{20}{9} \mathrm{~kg}$
4 $\frac{60}{9} \mathrm{~kg}$
Thermal Properties of Matter

146466 In a thermocouple the temperature of the cold junction is $\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}$ and the neutral temperature is $T_{n}{ }^{\circ} \mathrm{C}$. Then the inversion temperature $T_{i}{ }^{\circ} \mathrm{C}$ is

1 $\left(2 \mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
2 $\left(\mathrm{T}_{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
3 $\left(\frac{\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
4 $\left(\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146463 Two bodies $A$ and $B$ of equal surface area have thermal emissivity of 0.01 and 0.81 respectively. The two bodies are radiating energy from the two bodies $A$ and $B$ at wavelengths $\lambda_{A}$ and $\lambda_{B}$ respectively. Different in these two wavelengths is $1 \mu \mathrm{m}$. If the temperature of the body $A$ is $5802 \mathrm{~K}$, then value of $\lambda_{B}$ is

1 $\frac{1}{2} \mu \mathrm{m}$
2 $1 \mu$
3 $2 \mu$
4 $\frac{3}{2} \mu \mathrm{m}$
Thermal Properties of Matter

146464 Efficiency of a heat engine whose sink is at temperature of $300 \mathrm{~K}$ is $40 \%$. To increase the efficiency to $60 \%$, keeping the sink temperature constant, the source temperature must be increased by

1 $750 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $250 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermal Properties of Matter

146465 A tap supplies water at $10{ }^{\circ} \mathrm{C}$ and another tap supplies hot water at $100{ }^{\circ} \mathrm{C}$. How much hot water must be taken so that we get $20 \mathrm{~kg}$ of water at $35{ }^{\circ} \mathrm{C}$.

1 $\frac{40}{9} \mathrm{~kg}$
2 $\frac{50}{9} \mathrm{~kg}$
3 $\frac{20}{9} \mathrm{~kg}$
4 $\frac{60}{9} \mathrm{~kg}$
Thermal Properties of Matter

146466 In a thermocouple the temperature of the cold junction is $\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}$ and the neutral temperature is $T_{n}{ }^{\circ} \mathrm{C}$. Then the inversion temperature $T_{i}{ }^{\circ} \mathrm{C}$ is

1 $\left(2 \mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
2 $\left(\mathrm{T}_{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
3 $\left(\frac{\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
4 $\left(\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146463 Two bodies $A$ and $B$ of equal surface area have thermal emissivity of 0.01 and 0.81 respectively. The two bodies are radiating energy from the two bodies $A$ and $B$ at wavelengths $\lambda_{A}$ and $\lambda_{B}$ respectively. Different in these two wavelengths is $1 \mu \mathrm{m}$. If the temperature of the body $A$ is $5802 \mathrm{~K}$, then value of $\lambda_{B}$ is

1 $\frac{1}{2} \mu \mathrm{m}$
2 $1 \mu$
3 $2 \mu$
4 $\frac{3}{2} \mu \mathrm{m}$
Thermal Properties of Matter

146464 Efficiency of a heat engine whose sink is at temperature of $300 \mathrm{~K}$ is $40 \%$. To increase the efficiency to $60 \%$, keeping the sink temperature constant, the source temperature must be increased by

1 $750 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $250 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermal Properties of Matter

146465 A tap supplies water at $10{ }^{\circ} \mathrm{C}$ and another tap supplies hot water at $100{ }^{\circ} \mathrm{C}$. How much hot water must be taken so that we get $20 \mathrm{~kg}$ of water at $35{ }^{\circ} \mathrm{C}$.

1 $\frac{40}{9} \mathrm{~kg}$
2 $\frac{50}{9} \mathrm{~kg}$
3 $\frac{20}{9} \mathrm{~kg}$
4 $\frac{60}{9} \mathrm{~kg}$
Thermal Properties of Matter

146466 In a thermocouple the temperature of the cold junction is $\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}$ and the neutral temperature is $T_{n}{ }^{\circ} \mathrm{C}$. Then the inversion temperature $T_{i}{ }^{\circ} \mathrm{C}$ is

1 $\left(2 \mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
2 $\left(\mathrm{T}_{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{c}}\right){ }^{\circ} \mathrm{C}$
3 $\left(\frac{\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$
4 $\left(\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}}{2}\right){ }^{\circ} \mathrm{C}$