10. Continuity Equation and Bernoulli's Principle and It’s Application
Mechanical Properties of Fluids

143405 An open tank filled with water (density) $\rho$ has a narrow hole at a depth of $h$ below the water surface. The velocity of water flowing out is

1 $\mathrm{h} \rho \mathrm{g}$
2 $2 \mathrm{gh}$
3 $\sqrt{2 \mathrm{gh}}$
4 gh
Mechanical Properties of Fluids

143406 The rate of flow of glycerin of density $1.25 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ through the conical section of a pipe if the radii of its ends are $0.1 \mathrm{~m}$ and $0.04 \mathrm{~m}$ and the pressure drop across its length $10 \mathrm{Nm}^{-2}$ is

1 $6.93 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
2 $7.8 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
3 $10.4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
4 $14.5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Mechanical Properties of Fluids

143407 A cylindrical tank has a hole of $1 \mathrm{~cm}^{2}$ in its bottom. If the water is allowed to flow into the thank from a tube above it at the rate of $70 \mathrm{~cm}^{3} / \mathrm{s}$, then the maximum height up to which water can rise in the tank is

1 $2.5 \mathrm{~cm}$
2 $5 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $0.25 \mathrm{~cm}$
Mechanical Properties of Fluids

143408 A manometer connected to a closed tap reads $3.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. When the valve is opened, the reading of monometer falls to $3.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then velocity of flow of water is

1 $100 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $1 \mathrm{~m} / \mathrm{s}$
4 $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

143405 An open tank filled with water (density) $\rho$ has a narrow hole at a depth of $h$ below the water surface. The velocity of water flowing out is

1 $\mathrm{h} \rho \mathrm{g}$
2 $2 \mathrm{gh}$
3 $\sqrt{2 \mathrm{gh}}$
4 gh
Mechanical Properties of Fluids

143406 The rate of flow of glycerin of density $1.25 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ through the conical section of a pipe if the radii of its ends are $0.1 \mathrm{~m}$ and $0.04 \mathrm{~m}$ and the pressure drop across its length $10 \mathrm{Nm}^{-2}$ is

1 $6.93 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
2 $7.8 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
3 $10.4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
4 $14.5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Mechanical Properties of Fluids

143407 A cylindrical tank has a hole of $1 \mathrm{~cm}^{2}$ in its bottom. If the water is allowed to flow into the thank from a tube above it at the rate of $70 \mathrm{~cm}^{3} / \mathrm{s}$, then the maximum height up to which water can rise in the tank is

1 $2.5 \mathrm{~cm}$
2 $5 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $0.25 \mathrm{~cm}$
Mechanical Properties of Fluids

143408 A manometer connected to a closed tap reads $3.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. When the valve is opened, the reading of monometer falls to $3.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then velocity of flow of water is

1 $100 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $1 \mathrm{~m} / \mathrm{s}$
4 $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

143405 An open tank filled with water (density) $\rho$ has a narrow hole at a depth of $h$ below the water surface. The velocity of water flowing out is

1 $\mathrm{h} \rho \mathrm{g}$
2 $2 \mathrm{gh}$
3 $\sqrt{2 \mathrm{gh}}$
4 gh
Mechanical Properties of Fluids

143406 The rate of flow of glycerin of density $1.25 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ through the conical section of a pipe if the radii of its ends are $0.1 \mathrm{~m}$ and $0.04 \mathrm{~m}$ and the pressure drop across its length $10 \mathrm{Nm}^{-2}$ is

1 $6.93 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
2 $7.8 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
3 $10.4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
4 $14.5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Mechanical Properties of Fluids

143407 A cylindrical tank has a hole of $1 \mathrm{~cm}^{2}$ in its bottom. If the water is allowed to flow into the thank from a tube above it at the rate of $70 \mathrm{~cm}^{3} / \mathrm{s}$, then the maximum height up to which water can rise in the tank is

1 $2.5 \mathrm{~cm}$
2 $5 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $0.25 \mathrm{~cm}$
Mechanical Properties of Fluids

143408 A manometer connected to a closed tap reads $3.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. When the valve is opened, the reading of monometer falls to $3.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then velocity of flow of water is

1 $100 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $1 \mathrm{~m} / \mathrm{s}$
4 $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

143405 An open tank filled with water (density) $\rho$ has a narrow hole at a depth of $h$ below the water surface. The velocity of water flowing out is

1 $\mathrm{h} \rho \mathrm{g}$
2 $2 \mathrm{gh}$
3 $\sqrt{2 \mathrm{gh}}$
4 gh
Mechanical Properties of Fluids

143406 The rate of flow of glycerin of density $1.25 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ through the conical section of a pipe if the radii of its ends are $0.1 \mathrm{~m}$ and $0.04 \mathrm{~m}$ and the pressure drop across its length $10 \mathrm{Nm}^{-2}$ is

1 $6.93 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
2 $7.8 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
3 $10.4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
4 $14.5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Mechanical Properties of Fluids

143407 A cylindrical tank has a hole of $1 \mathrm{~cm}^{2}$ in its bottom. If the water is allowed to flow into the thank from a tube above it at the rate of $70 \mathrm{~cm}^{3} / \mathrm{s}$, then the maximum height up to which water can rise in the tank is

1 $2.5 \mathrm{~cm}$
2 $5 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $0.25 \mathrm{~cm}$
Mechanical Properties of Fluids

143408 A manometer connected to a closed tap reads $3.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. When the valve is opened, the reading of monometer falls to $3.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then velocity of flow of water is

1 $100 \mathrm{~m} / \mathrm{s}$
2 $10 \mathrm{~m} / \mathrm{s}$
3 $1 \mathrm{~m} / \mathrm{s}$
4 $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$