05. Archimedes Principle
Mechanical Properties of Fluids

143209 An object of mass $10 \mathrm{~kg}$ is released from rest in a liquid. If the object moves a distance of $2 \mathrm{~m}$ while sinking in time duration of $1 \mathrm{~s}$, then the mass of the liquid displaced by the submerged object is
(Acceleration due to gravity $=\mathbf{1 0} \mathbf{~ m s}^{-2}$ )

1 $5 \mathrm{~kg}$
2 $6 \mathrm{~kg}$
3 $3 \mathrm{~kg}$
4 $4 \mathrm{~kg}$
Mechanical Properties of Fluids

143211 A vessel contains oil (density $0.8 \mathrm{~g} \mathrm{~cm}^{-3}$ ) over mercury (density $13.6 \mathrm{~g} \mathrm{~cm}^{-3}$ ). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in $\mathrm{g} \mathrm{cm}^{-3}$ is:

1 12.8
2 7.2
3 6.4
4 3.3
Mechanical Properties of Fluids

143186 Find the apparent weight of a metallic block of density $5 \mathrm{~g} \mathrm{~cm}^{-3}$ and dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, in water.

1 $5 \times 5 \times 5 \times 5 \mathrm{gf}$
2 $4 \times 4 \times 4 \times 4 \mathrm{gf}$
3 $5 \times 4 \times 4 \times 4 \mathrm{gf}$
4 $4 \times 5 \times 5 \times 5 \mathrm{gf}$
Mechanical Properties of Fluids

143198 A body of density d, is counterpoised by Mg of weight of density $d_{2}$ in air of density $d$. Then, the true mass of the body is-

1 $\mathrm{M}$
2 $M\left(1-\frac{d}{d_{2}}\right)$
3 $\mathrm{M}\left(1-\frac{\mathrm{d}}{\mathrm{d}_{1}}\right)$
4 $M\left(\frac{1-d / d_{2}}{1-d / d_{1}}\right)$
Mechanical Properties of Fluids

143209 An object of mass $10 \mathrm{~kg}$ is released from rest in a liquid. If the object moves a distance of $2 \mathrm{~m}$ while sinking in time duration of $1 \mathrm{~s}$, then the mass of the liquid displaced by the submerged object is
(Acceleration due to gravity $=\mathbf{1 0} \mathbf{~ m s}^{-2}$ )

1 $5 \mathrm{~kg}$
2 $6 \mathrm{~kg}$
3 $3 \mathrm{~kg}$
4 $4 \mathrm{~kg}$
Mechanical Properties of Fluids

143211 A vessel contains oil (density $0.8 \mathrm{~g} \mathrm{~cm}^{-3}$ ) over mercury (density $13.6 \mathrm{~g} \mathrm{~cm}^{-3}$ ). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in $\mathrm{g} \mathrm{cm}^{-3}$ is:

1 12.8
2 7.2
3 6.4
4 3.3
Mechanical Properties of Fluids

143186 Find the apparent weight of a metallic block of density $5 \mathrm{~g} \mathrm{~cm}^{-3}$ and dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, in water.

1 $5 \times 5 \times 5 \times 5 \mathrm{gf}$
2 $4 \times 4 \times 4 \times 4 \mathrm{gf}$
3 $5 \times 4 \times 4 \times 4 \mathrm{gf}$
4 $4 \times 5 \times 5 \times 5 \mathrm{gf}$
Mechanical Properties of Fluids

143198 A body of density d, is counterpoised by Mg of weight of density $d_{2}$ in air of density $d$. Then, the true mass of the body is-

1 $\mathrm{M}$
2 $M\left(1-\frac{d}{d_{2}}\right)$
3 $\mathrm{M}\left(1-\frac{\mathrm{d}}{\mathrm{d}_{1}}\right)$
4 $M\left(\frac{1-d / d_{2}}{1-d / d_{1}}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

143209 An object of mass $10 \mathrm{~kg}$ is released from rest in a liquid. If the object moves a distance of $2 \mathrm{~m}$ while sinking in time duration of $1 \mathrm{~s}$, then the mass of the liquid displaced by the submerged object is
(Acceleration due to gravity $=\mathbf{1 0} \mathbf{~ m s}^{-2}$ )

1 $5 \mathrm{~kg}$
2 $6 \mathrm{~kg}$
3 $3 \mathrm{~kg}$
4 $4 \mathrm{~kg}$
Mechanical Properties of Fluids

143211 A vessel contains oil (density $0.8 \mathrm{~g} \mathrm{~cm}^{-3}$ ) over mercury (density $13.6 \mathrm{~g} \mathrm{~cm}^{-3}$ ). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in $\mathrm{g} \mathrm{cm}^{-3}$ is:

1 12.8
2 7.2
3 6.4
4 3.3
Mechanical Properties of Fluids

143186 Find the apparent weight of a metallic block of density $5 \mathrm{~g} \mathrm{~cm}^{-3}$ and dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, in water.

1 $5 \times 5 \times 5 \times 5 \mathrm{gf}$
2 $4 \times 4 \times 4 \times 4 \mathrm{gf}$
3 $5 \times 4 \times 4 \times 4 \mathrm{gf}$
4 $4 \times 5 \times 5 \times 5 \mathrm{gf}$
Mechanical Properties of Fluids

143198 A body of density d, is counterpoised by Mg of weight of density $d_{2}$ in air of density $d$. Then, the true mass of the body is-

1 $\mathrm{M}$
2 $M\left(1-\frac{d}{d_{2}}\right)$
3 $\mathrm{M}\left(1-\frac{\mathrm{d}}{\mathrm{d}_{1}}\right)$
4 $M\left(\frac{1-d / d_{2}}{1-d / d_{1}}\right)$
Mechanical Properties of Fluids

143209 An object of mass $10 \mathrm{~kg}$ is released from rest in a liquid. If the object moves a distance of $2 \mathrm{~m}$ while sinking in time duration of $1 \mathrm{~s}$, then the mass of the liquid displaced by the submerged object is
(Acceleration due to gravity $=\mathbf{1 0} \mathbf{~ m s}^{-2}$ )

1 $5 \mathrm{~kg}$
2 $6 \mathrm{~kg}$
3 $3 \mathrm{~kg}$
4 $4 \mathrm{~kg}$
Mechanical Properties of Fluids

143211 A vessel contains oil (density $0.8 \mathrm{~g} \mathrm{~cm}^{-3}$ ) over mercury (density $13.6 \mathrm{~g} \mathrm{~cm}^{-3}$ ). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in $\mathrm{g} \mathrm{cm}^{-3}$ is:

1 12.8
2 7.2
3 6.4
4 3.3
Mechanical Properties of Fluids

143186 Find the apparent weight of a metallic block of density $5 \mathrm{~g} \mathrm{~cm}^{-3}$ and dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, in water.

1 $5 \times 5 \times 5 \times 5 \mathrm{gf}$
2 $4 \times 4 \times 4 \times 4 \mathrm{gf}$
3 $5 \times 4 \times 4 \times 4 \mathrm{gf}$
4 $4 \times 5 \times 5 \times 5 \mathrm{gf}$
Mechanical Properties of Fluids

143198 A body of density d, is counterpoised by Mg of weight of density $d_{2}$ in air of density $d$. Then, the true mass of the body is-

1 $\mathrm{M}$
2 $M\left(1-\frac{d}{d_{2}}\right)$
3 $\mathrm{M}\left(1-\frac{\mathrm{d}}{\mathrm{d}_{1}}\right)$
4 $M\left(\frac{1-d / d_{2}}{1-d / d_{1}}\right)$