03. Excess of Pressure (Bubbles and Drops)
Mechanical Properties of Fluids

143052 If two soap bubbles of equal radii $r$ coalesce then the radius of curvature of interface between two bubbles will be

1 $\mathrm{r}$
2 0
3 infinity
4 $\frac{1}{2} \mathrm{r}$
Mechanical Properties of Fluids

143054 Two equal drops of water are falling through air with a steady velocity of $5 \mathrm{~cm} / \mathrm{s}$. If the drops coalesce, the new steady velocity of the coalesced drop will be

1 $5 \mathrm{~cm} / \mathrm{s}$
2 $10 \mathrm{~cm} / \mathrm{s}$
3 $7.9 \mathrm{~cm} / \mathrm{s}$
4 $6 \mathrm{~cm} / \mathrm{s}$
Mechanical Properties of Fluids

143055 A number of water droplets of radius $r$ coalesce to form a drop of radius $R$. Assuming that the entire energy liberated due to coalesce goes into heating the drop, the rise in temperature $\mathrm{d} \theta$ is (surface tension of water $=T$ )

1 $\frac{2 \mathrm{~T}}{\mathrm{rJ}}$
2 $\frac{3 \mathrm{~T}}{\mathrm{rJ}}$
3 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right]$
4 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right]$
Mechanical Properties of Fluids

143056 The excess of pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is $n$ times, the volume of the second, where $n$ is

1 0.125
2 1
3 2
4 4
Mechanical Properties of Fluids

143052 If two soap bubbles of equal radii $r$ coalesce then the radius of curvature of interface between two bubbles will be

1 $\mathrm{r}$
2 0
3 infinity
4 $\frac{1}{2} \mathrm{r}$
Mechanical Properties of Fluids

143054 Two equal drops of water are falling through air with a steady velocity of $5 \mathrm{~cm} / \mathrm{s}$. If the drops coalesce, the new steady velocity of the coalesced drop will be

1 $5 \mathrm{~cm} / \mathrm{s}$
2 $10 \mathrm{~cm} / \mathrm{s}$
3 $7.9 \mathrm{~cm} / \mathrm{s}$
4 $6 \mathrm{~cm} / \mathrm{s}$
Mechanical Properties of Fluids

143055 A number of water droplets of radius $r$ coalesce to form a drop of radius $R$. Assuming that the entire energy liberated due to coalesce goes into heating the drop, the rise in temperature $\mathrm{d} \theta$ is (surface tension of water $=T$ )

1 $\frac{2 \mathrm{~T}}{\mathrm{rJ}}$
2 $\frac{3 \mathrm{~T}}{\mathrm{rJ}}$
3 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right]$
4 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right]$
Mechanical Properties of Fluids

143056 The excess of pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is $n$ times, the volume of the second, where $n$ is

1 0.125
2 1
3 2
4 4
Mechanical Properties of Fluids

143052 If two soap bubbles of equal radii $r$ coalesce then the radius of curvature of interface between two bubbles will be

1 $\mathrm{r}$
2 0
3 infinity
4 $\frac{1}{2} \mathrm{r}$
Mechanical Properties of Fluids

143054 Two equal drops of water are falling through air with a steady velocity of $5 \mathrm{~cm} / \mathrm{s}$. If the drops coalesce, the new steady velocity of the coalesced drop will be

1 $5 \mathrm{~cm} / \mathrm{s}$
2 $10 \mathrm{~cm} / \mathrm{s}$
3 $7.9 \mathrm{~cm} / \mathrm{s}$
4 $6 \mathrm{~cm} / \mathrm{s}$
Mechanical Properties of Fluids

143055 A number of water droplets of radius $r$ coalesce to form a drop of radius $R$. Assuming that the entire energy liberated due to coalesce goes into heating the drop, the rise in temperature $\mathrm{d} \theta$ is (surface tension of water $=T$ )

1 $\frac{2 \mathrm{~T}}{\mathrm{rJ}}$
2 $\frac{3 \mathrm{~T}}{\mathrm{rJ}}$
3 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right]$
4 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right]$
Mechanical Properties of Fluids

143056 The excess of pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is $n$ times, the volume of the second, where $n$ is

1 0.125
2 1
3 2
4 4
Mechanical Properties of Fluids

143052 If two soap bubbles of equal radii $r$ coalesce then the radius of curvature of interface between two bubbles will be

1 $\mathrm{r}$
2 0
3 infinity
4 $\frac{1}{2} \mathrm{r}$
Mechanical Properties of Fluids

143054 Two equal drops of water are falling through air with a steady velocity of $5 \mathrm{~cm} / \mathrm{s}$. If the drops coalesce, the new steady velocity of the coalesced drop will be

1 $5 \mathrm{~cm} / \mathrm{s}$
2 $10 \mathrm{~cm} / \mathrm{s}$
3 $7.9 \mathrm{~cm} / \mathrm{s}$
4 $6 \mathrm{~cm} / \mathrm{s}$
Mechanical Properties of Fluids

143055 A number of water droplets of radius $r$ coalesce to form a drop of radius $R$. Assuming that the entire energy liberated due to coalesce goes into heating the drop, the rise in temperature $\mathrm{d} \theta$ is (surface tension of water $=T$ )

1 $\frac{2 \mathrm{~T}}{\mathrm{rJ}}$
2 $\frac{3 \mathrm{~T}}{\mathrm{rJ}}$
3 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right]$
4 $\frac{3 \mathrm{~T}}{\mathrm{~J}}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right]$
Mechanical Properties of Fluids

143056 The excess of pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is $n$ times, the volume of the second, where $n$ is

1 0.125
2 1
3 2
4 4