03. Excess of Pressure (Bubbles and Drops)
Mechanical Properties of Fluids

143110 In a plant sucrose solution of coefficient of viscosity $0.0015 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ is driven at a velocity of $10^{-3} \mathrm{~m} / \mathrm{s}$ through xylem vessels of radius $2 \mu \mathrm{m}$ and the length $5 \mu \mathrm{m}$. The hydrostatic pressure difference across the length of xylem vessels in $\mathrm{N} / \mathbf{m}^{2}$ is:

1 5
2 8
3 10
4 15
Mechanical Properties of Fluids

143112 An air bubble doubles its radius on raising from the bottom of water reservoir to the surface of water in it. If the atmospheric pressure is equal to $10 \mathrm{~m}$ of water, the height of water in the reservoir is:

1 $10 \mathrm{~m}$
2 $20 \mathrm{~m}$
3 $70 \mathrm{~m}$
4 $80 \mathrm{~m}$
Mechanical Properties of Fluids

143113 A ball falling in a lake of depth $200 \mathrm{~m}$ shows $0.1 \%$ decrease in its volume at the bottom. The bulk modulus of the material of the ball is

1 $1.96 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.96 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.96 \times 10^{-9} \mathrm{~N} / \mathrm{m}^{2}$
4 $1.96 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Fluids

143114 When a body is strained, energy stored per unit volume is ( $\mathbf{Y}=$ Young's modulus)

1 $\frac{(\text { stress })}{\mathrm{Y}}$
2 $\frac{(\mathrm{Y} \times \text { strain })}{2}$
3 $\frac{(\text { stress })^{2}}{2 \mathrm{Y}}$
4 $\mathrm{Y} \times(\text { strain })^{2}$
5 $\frac{1}{2}\left(\frac{\text { stress }}{Y}\right)$
Mechanical Properties of Fluids

143110 In a plant sucrose solution of coefficient of viscosity $0.0015 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ is driven at a velocity of $10^{-3} \mathrm{~m} / \mathrm{s}$ through xylem vessels of radius $2 \mu \mathrm{m}$ and the length $5 \mu \mathrm{m}$. The hydrostatic pressure difference across the length of xylem vessels in $\mathrm{N} / \mathbf{m}^{2}$ is:

1 5
2 8
3 10
4 15
Mechanical Properties of Fluids

143112 An air bubble doubles its radius on raising from the bottom of water reservoir to the surface of water in it. If the atmospheric pressure is equal to $10 \mathrm{~m}$ of water, the height of water in the reservoir is:

1 $10 \mathrm{~m}$
2 $20 \mathrm{~m}$
3 $70 \mathrm{~m}$
4 $80 \mathrm{~m}$
Mechanical Properties of Fluids

143113 A ball falling in a lake of depth $200 \mathrm{~m}$ shows $0.1 \%$ decrease in its volume at the bottom. The bulk modulus of the material of the ball is

1 $1.96 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.96 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.96 \times 10^{-9} \mathrm{~N} / \mathrm{m}^{2}$
4 $1.96 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Fluids

143114 When a body is strained, energy stored per unit volume is ( $\mathbf{Y}=$ Young's modulus)

1 $\frac{(\text { stress })}{\mathrm{Y}}$
2 $\frac{(\mathrm{Y} \times \text { strain })}{2}$
3 $\frac{(\text { stress })^{2}}{2 \mathrm{Y}}$
4 $\mathrm{Y} \times(\text { strain })^{2}$
5 $\frac{1}{2}\left(\frac{\text { stress }}{Y}\right)$
Mechanical Properties of Fluids

143110 In a plant sucrose solution of coefficient of viscosity $0.0015 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ is driven at a velocity of $10^{-3} \mathrm{~m} / \mathrm{s}$ through xylem vessels of radius $2 \mu \mathrm{m}$ and the length $5 \mu \mathrm{m}$. The hydrostatic pressure difference across the length of xylem vessels in $\mathrm{N} / \mathbf{m}^{2}$ is:

1 5
2 8
3 10
4 15
Mechanical Properties of Fluids

143112 An air bubble doubles its radius on raising from the bottom of water reservoir to the surface of water in it. If the atmospheric pressure is equal to $10 \mathrm{~m}$ of water, the height of water in the reservoir is:

1 $10 \mathrm{~m}$
2 $20 \mathrm{~m}$
3 $70 \mathrm{~m}$
4 $80 \mathrm{~m}$
Mechanical Properties of Fluids

143113 A ball falling in a lake of depth $200 \mathrm{~m}$ shows $0.1 \%$ decrease in its volume at the bottom. The bulk modulus of the material of the ball is

1 $1.96 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.96 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.96 \times 10^{-9} \mathrm{~N} / \mathrm{m}^{2}$
4 $1.96 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Fluids

143114 When a body is strained, energy stored per unit volume is ( $\mathbf{Y}=$ Young's modulus)

1 $\frac{(\text { stress })}{\mathrm{Y}}$
2 $\frac{(\mathrm{Y} \times \text { strain })}{2}$
3 $\frac{(\text { stress })^{2}}{2 \mathrm{Y}}$
4 $\mathrm{Y} \times(\text { strain })^{2}$
5 $\frac{1}{2}\left(\frac{\text { stress }}{Y}\right)$
Mechanical Properties of Fluids

143110 In a plant sucrose solution of coefficient of viscosity $0.0015 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ is driven at a velocity of $10^{-3} \mathrm{~m} / \mathrm{s}$ through xylem vessels of radius $2 \mu \mathrm{m}$ and the length $5 \mu \mathrm{m}$. The hydrostatic pressure difference across the length of xylem vessels in $\mathrm{N} / \mathbf{m}^{2}$ is:

1 5
2 8
3 10
4 15
Mechanical Properties of Fluids

143112 An air bubble doubles its radius on raising from the bottom of water reservoir to the surface of water in it. If the atmospheric pressure is equal to $10 \mathrm{~m}$ of water, the height of water in the reservoir is:

1 $10 \mathrm{~m}$
2 $20 \mathrm{~m}$
3 $70 \mathrm{~m}$
4 $80 \mathrm{~m}$
Mechanical Properties of Fluids

143113 A ball falling in a lake of depth $200 \mathrm{~m}$ shows $0.1 \%$ decrease in its volume at the bottom. The bulk modulus of the material of the ball is

1 $1.96 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.96 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.96 \times 10^{-9} \mathrm{~N} / \mathrm{m}^{2}$
4 $1.96 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Fluids

143114 When a body is strained, energy stored per unit volume is ( $\mathbf{Y}=$ Young's modulus)

1 $\frac{(\text { stress })}{\mathrm{Y}}$
2 $\frac{(\mathrm{Y} \times \text { strain })}{2}$
3 $\frac{(\text { stress })^{2}}{2 \mathrm{Y}}$
4 $\mathrm{Y} \times(\text { strain })^{2}$
5 $\frac{1}{2}\left(\frac{\text { stress }}{Y}\right)$