03. Excess of Pressure (Bubbles and Drops)
Mechanical Properties of Fluids

143078 Radius of a soap bubble is increased from $1 \mathrm{~cm}$ to $2 \mathrm{~cm}$. Surface tension of the solution is $\mathbf{0 . 0 2 5}$ $\mathrm{Nm}^{-1}$. The work done on the bubble is:

1 $5.027 \times 10^{-4} \mathrm{~J}$
2 $2.431 \times 10^{-4} \mathrm{~J}$
3 $1.884 \times 10^{-4} \mathrm{~J}$
4 $3.075 \times 10^{-4} \mathrm{~J}$
Mechanical Properties of Fluids

143079 The excess pressure in a spherical soap bubble $A$ is three times that of another spherical soap bubble $B$. The ratio of their volume $V_{A}: V_{B}$ is

1 $1: 27$
2 $1: 3$
3 $1: 9$
4 $27: 1$
Mechanical Properties of Fluids

143080 Find the depth at which an air bubble of radius $0.7 \mathrm{~mm}$ will remain in equilibrium in water. Given surface tension of water $=7.0 \times 10^{-2}$ $\mathrm{Nm}^{-1}$. Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$

1 $2 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $12 \mathrm{~cm}$
Mechanical Properties of Fluids

143081 The surface tension and vapour pressure of a liquid at $25^{0} \mathrm{C}$ are $8 \times 10^{-2} \mathrm{Nm}^{-1}$ and $2.5 \times 10^{3}$ $\mathrm{Pa}$ respectively. The radius of the smallest spherical water droplet which can form without evaporating at $25^{\circ} \mathrm{C}$ is-

1 $64 \mu \mathrm{m}$
2 $30 \mu \mathrm{m}$
3 $60 \mu \mathrm{m}$
4 $32 \mu \mathrm{m}$
Mechanical Properties of Fluids

143078 Radius of a soap bubble is increased from $1 \mathrm{~cm}$ to $2 \mathrm{~cm}$. Surface tension of the solution is $\mathbf{0 . 0 2 5}$ $\mathrm{Nm}^{-1}$. The work done on the bubble is:

1 $5.027 \times 10^{-4} \mathrm{~J}$
2 $2.431 \times 10^{-4} \mathrm{~J}$
3 $1.884 \times 10^{-4} \mathrm{~J}$
4 $3.075 \times 10^{-4} \mathrm{~J}$
Mechanical Properties of Fluids

143079 The excess pressure in a spherical soap bubble $A$ is three times that of another spherical soap bubble $B$. The ratio of their volume $V_{A}: V_{B}$ is

1 $1: 27$
2 $1: 3$
3 $1: 9$
4 $27: 1$
Mechanical Properties of Fluids

143080 Find the depth at which an air bubble of radius $0.7 \mathrm{~mm}$ will remain in equilibrium in water. Given surface tension of water $=7.0 \times 10^{-2}$ $\mathrm{Nm}^{-1}$. Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$

1 $2 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $12 \mathrm{~cm}$
Mechanical Properties of Fluids

143081 The surface tension and vapour pressure of a liquid at $25^{0} \mathrm{C}$ are $8 \times 10^{-2} \mathrm{Nm}^{-1}$ and $2.5 \times 10^{3}$ $\mathrm{Pa}$ respectively. The radius of the smallest spherical water droplet which can form without evaporating at $25^{\circ} \mathrm{C}$ is-

1 $64 \mu \mathrm{m}$
2 $30 \mu \mathrm{m}$
3 $60 \mu \mathrm{m}$
4 $32 \mu \mathrm{m}$
Mechanical Properties of Fluids

143078 Radius of a soap bubble is increased from $1 \mathrm{~cm}$ to $2 \mathrm{~cm}$. Surface tension of the solution is $\mathbf{0 . 0 2 5}$ $\mathrm{Nm}^{-1}$. The work done on the bubble is:

1 $5.027 \times 10^{-4} \mathrm{~J}$
2 $2.431 \times 10^{-4} \mathrm{~J}$
3 $1.884 \times 10^{-4} \mathrm{~J}$
4 $3.075 \times 10^{-4} \mathrm{~J}$
Mechanical Properties of Fluids

143079 The excess pressure in a spherical soap bubble $A$ is three times that of another spherical soap bubble $B$. The ratio of their volume $V_{A}: V_{B}$ is

1 $1: 27$
2 $1: 3$
3 $1: 9$
4 $27: 1$
Mechanical Properties of Fluids

143080 Find the depth at which an air bubble of radius $0.7 \mathrm{~mm}$ will remain in equilibrium in water. Given surface tension of water $=7.0 \times 10^{-2}$ $\mathrm{Nm}^{-1}$. Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$

1 $2 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $12 \mathrm{~cm}$
Mechanical Properties of Fluids

143081 The surface tension and vapour pressure of a liquid at $25^{0} \mathrm{C}$ are $8 \times 10^{-2} \mathrm{Nm}^{-1}$ and $2.5 \times 10^{3}$ $\mathrm{Pa}$ respectively. The radius of the smallest spherical water droplet which can form without evaporating at $25^{\circ} \mathrm{C}$ is-

1 $64 \mu \mathrm{m}$
2 $30 \mu \mathrm{m}$
3 $60 \mu \mathrm{m}$
4 $32 \mu \mathrm{m}$
Mechanical Properties of Fluids

143078 Radius of a soap bubble is increased from $1 \mathrm{~cm}$ to $2 \mathrm{~cm}$. Surface tension of the solution is $\mathbf{0 . 0 2 5}$ $\mathrm{Nm}^{-1}$. The work done on the bubble is:

1 $5.027 \times 10^{-4} \mathrm{~J}$
2 $2.431 \times 10^{-4} \mathrm{~J}$
3 $1.884 \times 10^{-4} \mathrm{~J}$
4 $3.075 \times 10^{-4} \mathrm{~J}$
Mechanical Properties of Fluids

143079 The excess pressure in a spherical soap bubble $A$ is three times that of another spherical soap bubble $B$. The ratio of their volume $V_{A}: V_{B}$ is

1 $1: 27$
2 $1: 3$
3 $1: 9$
4 $27: 1$
Mechanical Properties of Fluids

143080 Find the depth at which an air bubble of radius $0.7 \mathrm{~mm}$ will remain in equilibrium in water. Given surface tension of water $=7.0 \times 10^{-2}$ $\mathrm{Nm}^{-1}$. Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$

1 $2 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $12 \mathrm{~cm}$
Mechanical Properties of Fluids

143081 The surface tension and vapour pressure of a liquid at $25^{0} \mathrm{C}$ are $8 \times 10^{-2} \mathrm{Nm}^{-1}$ and $2.5 \times 10^{3}$ $\mathrm{Pa}$ respectively. The radius of the smallest spherical water droplet which can form without evaporating at $25^{\circ} \mathrm{C}$ is-

1 $64 \mu \mathrm{m}$
2 $30 \mu \mathrm{m}$
3 $60 \mu \mathrm{m}$
4 $32 \mu \mathrm{m}$