02. Capillary and Angle of Contact
Mechanical Properties of Fluids

142960 The minimum velocity of capillary waves on the surface of water is (surface tension of water $\left.=7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}\right)$

1 $0.23 \mathrm{~m} / \mathrm{s}$
2 $0.46 \mathrm{~m} / \mathrm{s}$
3 $0.69 \mathrm{~m} / \mathrm{s}$
4 $0.92 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142961 Water is flowing in a pipe of diameter $4 \mathrm{~cm}$ with a velocity $3 \mathrm{~m} / \mathrm{s}$. The water then enters into a pipe of diameter $2 \mathrm{~cm}$. The velocity of water in the other pipe is :

1 $3 \mathrm{~m} / \mathrm{s}$
2 $6 \mathrm{~m} / \mathrm{s}$
3 $12 \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142962 Water rises in a capillary tube to a certain height such that the upward force due to surface tension is balanced by $63 \times 10^{-4} \mathrm{~N}$ force due to the weight of the water. The surface tension of water is $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The inner diameter of the capillary tube is nearly $(\pi=$ 22/7)

1 $7 \times 10^{-2} \mathrm{~m}$
2 $9 \times 10^{-2} \mathrm{~m}$
3 $6.3 \times 10^{-1} \mathrm{~m}$
4 $3 \times 10^{-2} \mathrm{~m}$
Mechanical Properties of Fluids

142963 When a capillary tube is immersed in water vertically, water rises to a height ' $h$ ' inside the tube. If the radius of another capillary tube is $1 / 3^{\text {rd }}$ that of the previous, the height to which water will rise in this tube, is

1 $\mathrm{h} \sqrt{3}$
2 $\frac{\mathrm{h}}{3}$
3 $3 \mathrm{~h}$
4 $\mathrm{h}$
Mechanical Properties of Fluids

142960 The minimum velocity of capillary waves on the surface of water is (surface tension of water $\left.=7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}\right)$

1 $0.23 \mathrm{~m} / \mathrm{s}$
2 $0.46 \mathrm{~m} / \mathrm{s}$
3 $0.69 \mathrm{~m} / \mathrm{s}$
4 $0.92 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142961 Water is flowing in a pipe of diameter $4 \mathrm{~cm}$ with a velocity $3 \mathrm{~m} / \mathrm{s}$. The water then enters into a pipe of diameter $2 \mathrm{~cm}$. The velocity of water in the other pipe is :

1 $3 \mathrm{~m} / \mathrm{s}$
2 $6 \mathrm{~m} / \mathrm{s}$
3 $12 \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142962 Water rises in a capillary tube to a certain height such that the upward force due to surface tension is balanced by $63 \times 10^{-4} \mathrm{~N}$ force due to the weight of the water. The surface tension of water is $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The inner diameter of the capillary tube is nearly $(\pi=$ 22/7)

1 $7 \times 10^{-2} \mathrm{~m}$
2 $9 \times 10^{-2} \mathrm{~m}$
3 $6.3 \times 10^{-1} \mathrm{~m}$
4 $3 \times 10^{-2} \mathrm{~m}$
Mechanical Properties of Fluids

142963 When a capillary tube is immersed in water vertically, water rises to a height ' $h$ ' inside the tube. If the radius of another capillary tube is $1 / 3^{\text {rd }}$ that of the previous, the height to which water will rise in this tube, is

1 $\mathrm{h} \sqrt{3}$
2 $\frac{\mathrm{h}}{3}$
3 $3 \mathrm{~h}$
4 $\mathrm{h}$
Mechanical Properties of Fluids

142960 The minimum velocity of capillary waves on the surface of water is (surface tension of water $\left.=7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}\right)$

1 $0.23 \mathrm{~m} / \mathrm{s}$
2 $0.46 \mathrm{~m} / \mathrm{s}$
3 $0.69 \mathrm{~m} / \mathrm{s}$
4 $0.92 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142961 Water is flowing in a pipe of diameter $4 \mathrm{~cm}$ with a velocity $3 \mathrm{~m} / \mathrm{s}$. The water then enters into a pipe of diameter $2 \mathrm{~cm}$. The velocity of water in the other pipe is :

1 $3 \mathrm{~m} / \mathrm{s}$
2 $6 \mathrm{~m} / \mathrm{s}$
3 $12 \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142962 Water rises in a capillary tube to a certain height such that the upward force due to surface tension is balanced by $63 \times 10^{-4} \mathrm{~N}$ force due to the weight of the water. The surface tension of water is $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The inner diameter of the capillary tube is nearly $(\pi=$ 22/7)

1 $7 \times 10^{-2} \mathrm{~m}$
2 $9 \times 10^{-2} \mathrm{~m}$
3 $6.3 \times 10^{-1} \mathrm{~m}$
4 $3 \times 10^{-2} \mathrm{~m}$
Mechanical Properties of Fluids

142963 When a capillary tube is immersed in water vertically, water rises to a height ' $h$ ' inside the tube. If the radius of another capillary tube is $1 / 3^{\text {rd }}$ that of the previous, the height to which water will rise in this tube, is

1 $\mathrm{h} \sqrt{3}$
2 $\frac{\mathrm{h}}{3}$
3 $3 \mathrm{~h}$
4 $\mathrm{h}$
Mechanical Properties of Fluids

142960 The minimum velocity of capillary waves on the surface of water is (surface tension of water $\left.=7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}\right)$

1 $0.23 \mathrm{~m} / \mathrm{s}$
2 $0.46 \mathrm{~m} / \mathrm{s}$
3 $0.69 \mathrm{~m} / \mathrm{s}$
4 $0.92 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142961 Water is flowing in a pipe of diameter $4 \mathrm{~cm}$ with a velocity $3 \mathrm{~m} / \mathrm{s}$. The water then enters into a pipe of diameter $2 \mathrm{~cm}$. The velocity of water in the other pipe is :

1 $3 \mathrm{~m} / \mathrm{s}$
2 $6 \mathrm{~m} / \mathrm{s}$
3 $12 \mathrm{~m} / \mathrm{s}$
4 $8 \mathrm{~m} / \mathrm{s}$
Mechanical Properties of Fluids

142962 Water rises in a capillary tube to a certain height such that the upward force due to surface tension is balanced by $63 \times 10^{-4} \mathrm{~N}$ force due to the weight of the water. The surface tension of water is $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The inner diameter of the capillary tube is nearly $(\pi=$ 22/7)

1 $7 \times 10^{-2} \mathrm{~m}$
2 $9 \times 10^{-2} \mathrm{~m}$
3 $6.3 \times 10^{-1} \mathrm{~m}$
4 $3 \times 10^{-2} \mathrm{~m}$
Mechanical Properties of Fluids

142963 When a capillary tube is immersed in water vertically, water rises to a height ' $h$ ' inside the tube. If the radius of another capillary tube is $1 / 3^{\text {rd }}$ that of the previous, the height to which water will rise in this tube, is

1 $\mathrm{h} \sqrt{3}$
2 $\frac{\mathrm{h}}{3}$
3 $3 \mathrm{~h}$
4 $\mathrm{h}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here