142808 A hemispherical bowl just floats without sinking in a liquid of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If outer diameter and the density of the bowl are $1 \mathrm{~m}$ and $2 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ respectively, then the inner diameter of the bowl will be
142808 A hemispherical bowl just floats without sinking in a liquid of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If outer diameter and the density of the bowl are $1 \mathrm{~m}$ and $2 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ respectively, then the inner diameter of the bowl will be
142808 A hemispherical bowl just floats without sinking in a liquid of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If outer diameter and the density of the bowl are $1 \mathrm{~m}$ and $2 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ respectively, then the inner diameter of the bowl will be
142808 A hemispherical bowl just floats without sinking in a liquid of density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If outer diameter and the density of the bowl are $1 \mathrm{~m}$ and $2 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ respectively, then the inner diameter of the bowl will be