01. Surface Tension and Surface Energy
Mechanical Properties of Fluids

142860 Work done in forming a liquid drop of radius $R$ is $W_{1}$ and that of radius $3 R$ is $W_{2}$. The ratio of work done is

1 $1: 3$
2 $1: 2$
3 $1: 4$
4 $1: 9$
Mechanical Properties of Fluids

142866 A large number of liquid drops each of radius $r$ coalesce to from a single drop of radius $R$. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid $T$, density $\rho$ )

1 $\sqrt{\frac{\mathrm{T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
2 $\sqrt{\frac{2 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
3 $\sqrt{\frac{4 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
4 $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
Mechanical Properties of Fluids

142869 If the radius of a spherical liquid (of surface tension S) drop increases from $r$ to $r+\Delta r$, the corresponding increase in the surface energy is

1 $8 \pi \mathrm{r} \Delta \mathrm{rS}$
2 $4 \pi \mathrm{r} \Delta \mathrm{rS}$
3 $16 \pi \mathrm{r} \Delta \mathrm{rS}$
4 $2 \pi \mathrm{r} \Delta \mathrm{rS}$
Mechanical Properties of Fluids

142871 For which of the two pairs, the angle of contact is same?

1 Water and glass; glass and mercury
2 Pure water and glass; glass and alcohol
3 Silver and water; mercury and glass
4 Silver and chromium; water and chromium.
Mechanical Properties of Fluids

142872 If the excess pressure inside a soap bubble is balanced by oil column of height $2 \mathrm{~mm}$, then the surface tension of soap solution will be
$(R=1 \mathrm{~cm} \text { and density } \rho=0.8 \mathrm{gm} / \mathrm{cc})$

1 $3.9 \mathrm{~N} / \mathrm{m}$
2 $3.9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
3 $3.9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
4 3.9 dyne $/ \mathrm{m}$
Mechanical Properties of Fluids

142860 Work done in forming a liquid drop of radius $R$ is $W_{1}$ and that of radius $3 R$ is $W_{2}$. The ratio of work done is

1 $1: 3$
2 $1: 2$
3 $1: 4$
4 $1: 9$
Mechanical Properties of Fluids

142866 A large number of liquid drops each of radius $r$ coalesce to from a single drop of radius $R$. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid $T$, density $\rho$ )

1 $\sqrt{\frac{\mathrm{T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
2 $\sqrt{\frac{2 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
3 $\sqrt{\frac{4 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
4 $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
Mechanical Properties of Fluids

142869 If the radius of a spherical liquid (of surface tension S) drop increases from $r$ to $r+\Delta r$, the corresponding increase in the surface energy is

1 $8 \pi \mathrm{r} \Delta \mathrm{rS}$
2 $4 \pi \mathrm{r} \Delta \mathrm{rS}$
3 $16 \pi \mathrm{r} \Delta \mathrm{rS}$
4 $2 \pi \mathrm{r} \Delta \mathrm{rS}$
Mechanical Properties of Fluids

142871 For which of the two pairs, the angle of contact is same?

1 Water and glass; glass and mercury
2 Pure water and glass; glass and alcohol
3 Silver and water; mercury and glass
4 Silver and chromium; water and chromium.
Mechanical Properties of Fluids

142872 If the excess pressure inside a soap bubble is balanced by oil column of height $2 \mathrm{~mm}$, then the surface tension of soap solution will be
$(R=1 \mathrm{~cm} \text { and density } \rho=0.8 \mathrm{gm} / \mathrm{cc})$

1 $3.9 \mathrm{~N} / \mathrm{m}$
2 $3.9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
3 $3.9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
4 3.9 dyne $/ \mathrm{m}$
Mechanical Properties of Fluids

142860 Work done in forming a liquid drop of radius $R$ is $W_{1}$ and that of radius $3 R$ is $W_{2}$. The ratio of work done is

1 $1: 3$
2 $1: 2$
3 $1: 4$
4 $1: 9$
Mechanical Properties of Fluids

142866 A large number of liquid drops each of radius $r$ coalesce to from a single drop of radius $R$. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid $T$, density $\rho$ )

1 $\sqrt{\frac{\mathrm{T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
2 $\sqrt{\frac{2 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
3 $\sqrt{\frac{4 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
4 $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
Mechanical Properties of Fluids

142869 If the radius of a spherical liquid (of surface tension S) drop increases from $r$ to $r+\Delta r$, the corresponding increase in the surface energy is

1 $8 \pi \mathrm{r} \Delta \mathrm{rS}$
2 $4 \pi \mathrm{r} \Delta \mathrm{rS}$
3 $16 \pi \mathrm{r} \Delta \mathrm{rS}$
4 $2 \pi \mathrm{r} \Delta \mathrm{rS}$
Mechanical Properties of Fluids

142871 For which of the two pairs, the angle of contact is same?

1 Water and glass; glass and mercury
2 Pure water and glass; glass and alcohol
3 Silver and water; mercury and glass
4 Silver and chromium; water and chromium.
Mechanical Properties of Fluids

142872 If the excess pressure inside a soap bubble is balanced by oil column of height $2 \mathrm{~mm}$, then the surface tension of soap solution will be
$(R=1 \mathrm{~cm} \text { and density } \rho=0.8 \mathrm{gm} / \mathrm{cc})$

1 $3.9 \mathrm{~N} / \mathrm{m}$
2 $3.9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
3 $3.9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
4 3.9 dyne $/ \mathrm{m}$
Mechanical Properties of Fluids

142860 Work done in forming a liquid drop of radius $R$ is $W_{1}$ and that of radius $3 R$ is $W_{2}$. The ratio of work done is

1 $1: 3$
2 $1: 2$
3 $1: 4$
4 $1: 9$
Mechanical Properties of Fluids

142866 A large number of liquid drops each of radius $r$ coalesce to from a single drop of radius $R$. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid $T$, density $\rho$ )

1 $\sqrt{\frac{\mathrm{T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
2 $\sqrt{\frac{2 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
3 $\sqrt{\frac{4 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
4 $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
Mechanical Properties of Fluids

142869 If the radius of a spherical liquid (of surface tension S) drop increases from $r$ to $r+\Delta r$, the corresponding increase in the surface energy is

1 $8 \pi \mathrm{r} \Delta \mathrm{rS}$
2 $4 \pi \mathrm{r} \Delta \mathrm{rS}$
3 $16 \pi \mathrm{r} \Delta \mathrm{rS}$
4 $2 \pi \mathrm{r} \Delta \mathrm{rS}$
Mechanical Properties of Fluids

142871 For which of the two pairs, the angle of contact is same?

1 Water and glass; glass and mercury
2 Pure water and glass; glass and alcohol
3 Silver and water; mercury and glass
4 Silver and chromium; water and chromium.
Mechanical Properties of Fluids

142872 If the excess pressure inside a soap bubble is balanced by oil column of height $2 \mathrm{~mm}$, then the surface tension of soap solution will be
$(R=1 \mathrm{~cm} \text { and density } \rho=0.8 \mathrm{gm} / \mathrm{cc})$

1 $3.9 \mathrm{~N} / \mathrm{m}$
2 $3.9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
3 $3.9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
4 3.9 dyne $/ \mathrm{m}$
Mechanical Properties of Fluids

142860 Work done in forming a liquid drop of radius $R$ is $W_{1}$ and that of radius $3 R$ is $W_{2}$. The ratio of work done is

1 $1: 3$
2 $1: 2$
3 $1: 4$
4 $1: 9$
Mechanical Properties of Fluids

142866 A large number of liquid drops each of radius $r$ coalesce to from a single drop of radius $R$. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, surface tension of liquid $T$, density $\rho$ )

1 $\sqrt{\frac{\mathrm{T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
2 $\sqrt{\frac{2 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
3 $\sqrt{\frac{4 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
4 $\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)}$
Mechanical Properties of Fluids

142869 If the radius of a spherical liquid (of surface tension S) drop increases from $r$ to $r+\Delta r$, the corresponding increase in the surface energy is

1 $8 \pi \mathrm{r} \Delta \mathrm{rS}$
2 $4 \pi \mathrm{r} \Delta \mathrm{rS}$
3 $16 \pi \mathrm{r} \Delta \mathrm{rS}$
4 $2 \pi \mathrm{r} \Delta \mathrm{rS}$
Mechanical Properties of Fluids

142871 For which of the two pairs, the angle of contact is same?

1 Water and glass; glass and mercury
2 Pure water and glass; glass and alcohol
3 Silver and water; mercury and glass
4 Silver and chromium; water and chromium.
Mechanical Properties of Fluids

142872 If the excess pressure inside a soap bubble is balanced by oil column of height $2 \mathrm{~mm}$, then the surface tension of soap solution will be
$(R=1 \mathrm{~cm} \text { and density } \rho=0.8 \mathrm{gm} / \mathrm{cc})$

1 $3.9 \mathrm{~N} / \mathrm{m}$
2 $3.9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
3 $3.9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
4 3.9 dyne $/ \mathrm{m}$