00. Fluid Property (Pressure, Density), Viscosity
Mechanical Properties of Fluids

142677 A piece of solid weights $120 \mathrm{~g}$ in air, $80 \mathrm{~g}$ in water and $60 \mathrm{~g}$ in a liquid. The relative density of the solid and that of the liquid are respectively,

1 3,2
2 $2, \frac{3}{4}$
3 $\frac{3}{2}, 2$
4 4,3
5 $3, \frac{3}{2}$
Mechanical Properties of Fluids

142678 A sphere of radius $R$ and density $\rho_{1}$ is dropped in a liquid of density $\sigma$. Its terminal velocity is $v_{1}$. If another sphere of radius $R$ and density $\rho_{2}$ is dropped in the same liquid, its terminal velocity will be

1 $\left(\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}\right) \mathrm{v}_{1}$
2 $\left(\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}\right) \mathrm{v}_{1}$
3 $\left(\frac{\rho_{1}}{\rho_{2}}\right) \mathrm{v}_{1}$
4 $\left(\frac{\rho_{2}}{\rho_{1}}\right) \mathrm{v}_{1}$
Mechanical Properties of Fluids

142679 The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be

1 $\frac{\mathrm{d}_{0}}{\mathrm{~d}}$
2 $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
3 $\frac{\mathrm{d}-\mathrm{d}_{0}}{\mathrm{~d}}$
4 $\frac{\mathrm{dd}_{0}}{\mathrm{~d} \cdot \mathrm{d}_{0}}$
Mechanical Properties of Fluids

142686 A glass flask having mass $390 \mathrm{~g}$ and an interior volume of $500 \mathrm{~cm}^{3}$ floats on water. When it is less than half filled with water. The density of material of the flask is

1 $0.8 \mathrm{~g} / \mathrm{cc}$
2 $2.8 \mathrm{~g} / \mathrm{cc}$
3 $1.8 \mathrm{~g} / \mathrm{cc}$
4 $0.28 \mathrm{~g} / \mathrm{cc}$
Mechanical Properties of Fluids

142687 The speed of the water in a river is $v$ near the surface. If the coefficient of viscosity of water is $\eta$ and the depth of the river is $H$, then the shearing stress between the horizontal layers of water is

1 $\eta \frac{\mathrm{H}}{\mathrm{v}}$
2 $\eta \frac{\mathrm{v}}{\mathrm{H}}$
3 $\frac{\mathrm{v}}{\eta \mathrm{H}}$
4 $\eta \mathrm{vH}$
Mechanical Properties of Fluids

142677 A piece of solid weights $120 \mathrm{~g}$ in air, $80 \mathrm{~g}$ in water and $60 \mathrm{~g}$ in a liquid. The relative density of the solid and that of the liquid are respectively,

1 3,2
2 $2, \frac{3}{4}$
3 $\frac{3}{2}, 2$
4 4,3
5 $3, \frac{3}{2}$
Mechanical Properties of Fluids

142678 A sphere of radius $R$ and density $\rho_{1}$ is dropped in a liquid of density $\sigma$. Its terminal velocity is $v_{1}$. If another sphere of radius $R$ and density $\rho_{2}$ is dropped in the same liquid, its terminal velocity will be

1 $\left(\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}\right) \mathrm{v}_{1}$
2 $\left(\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}\right) \mathrm{v}_{1}$
3 $\left(\frac{\rho_{1}}{\rho_{2}}\right) \mathrm{v}_{1}$
4 $\left(\frac{\rho_{2}}{\rho_{1}}\right) \mathrm{v}_{1}$
Mechanical Properties of Fluids

142679 The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be

1 $\frac{\mathrm{d}_{0}}{\mathrm{~d}}$
2 $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
3 $\frac{\mathrm{d}-\mathrm{d}_{0}}{\mathrm{~d}}$
4 $\frac{\mathrm{dd}_{0}}{\mathrm{~d} \cdot \mathrm{d}_{0}}$
Mechanical Properties of Fluids

142686 A glass flask having mass $390 \mathrm{~g}$ and an interior volume of $500 \mathrm{~cm}^{3}$ floats on water. When it is less than half filled with water. The density of material of the flask is

1 $0.8 \mathrm{~g} / \mathrm{cc}$
2 $2.8 \mathrm{~g} / \mathrm{cc}$
3 $1.8 \mathrm{~g} / \mathrm{cc}$
4 $0.28 \mathrm{~g} / \mathrm{cc}$
Mechanical Properties of Fluids

142687 The speed of the water in a river is $v$ near the surface. If the coefficient of viscosity of water is $\eta$ and the depth of the river is $H$, then the shearing stress between the horizontal layers of water is

1 $\eta \frac{\mathrm{H}}{\mathrm{v}}$
2 $\eta \frac{\mathrm{v}}{\mathrm{H}}$
3 $\frac{\mathrm{v}}{\eta \mathrm{H}}$
4 $\eta \mathrm{vH}$
Mechanical Properties of Fluids

142677 A piece of solid weights $120 \mathrm{~g}$ in air, $80 \mathrm{~g}$ in water and $60 \mathrm{~g}$ in a liquid. The relative density of the solid and that of the liquid are respectively,

1 3,2
2 $2, \frac{3}{4}$
3 $\frac{3}{2}, 2$
4 4,3
5 $3, \frac{3}{2}$
Mechanical Properties of Fluids

142678 A sphere of radius $R$ and density $\rho_{1}$ is dropped in a liquid of density $\sigma$. Its terminal velocity is $v_{1}$. If another sphere of radius $R$ and density $\rho_{2}$ is dropped in the same liquid, its terminal velocity will be

1 $\left(\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}\right) \mathrm{v}_{1}$
2 $\left(\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}\right) \mathrm{v}_{1}$
3 $\left(\frac{\rho_{1}}{\rho_{2}}\right) \mathrm{v}_{1}$
4 $\left(\frac{\rho_{2}}{\rho_{1}}\right) \mathrm{v}_{1}$
Mechanical Properties of Fluids

142679 The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be

1 $\frac{\mathrm{d}_{0}}{\mathrm{~d}}$
2 $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
3 $\frac{\mathrm{d}-\mathrm{d}_{0}}{\mathrm{~d}}$
4 $\frac{\mathrm{dd}_{0}}{\mathrm{~d} \cdot \mathrm{d}_{0}}$
Mechanical Properties of Fluids

142686 A glass flask having mass $390 \mathrm{~g}$ and an interior volume of $500 \mathrm{~cm}^{3}$ floats on water. When it is less than half filled with water. The density of material of the flask is

1 $0.8 \mathrm{~g} / \mathrm{cc}$
2 $2.8 \mathrm{~g} / \mathrm{cc}$
3 $1.8 \mathrm{~g} / \mathrm{cc}$
4 $0.28 \mathrm{~g} / \mathrm{cc}$
Mechanical Properties of Fluids

142687 The speed of the water in a river is $v$ near the surface. If the coefficient of viscosity of water is $\eta$ and the depth of the river is $H$, then the shearing stress between the horizontal layers of water is

1 $\eta \frac{\mathrm{H}}{\mathrm{v}}$
2 $\eta \frac{\mathrm{v}}{\mathrm{H}}$
3 $\frac{\mathrm{v}}{\eta \mathrm{H}}$
4 $\eta \mathrm{vH}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

142677 A piece of solid weights $120 \mathrm{~g}$ in air, $80 \mathrm{~g}$ in water and $60 \mathrm{~g}$ in a liquid. The relative density of the solid and that of the liquid are respectively,

1 3,2
2 $2, \frac{3}{4}$
3 $\frac{3}{2}, 2$
4 4,3
5 $3, \frac{3}{2}$
Mechanical Properties of Fluids

142678 A sphere of radius $R$ and density $\rho_{1}$ is dropped in a liquid of density $\sigma$. Its terminal velocity is $v_{1}$. If another sphere of radius $R$ and density $\rho_{2}$ is dropped in the same liquid, its terminal velocity will be

1 $\left(\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}\right) \mathrm{v}_{1}$
2 $\left(\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}\right) \mathrm{v}_{1}$
3 $\left(\frac{\rho_{1}}{\rho_{2}}\right) \mathrm{v}_{1}$
4 $\left(\frac{\rho_{2}}{\rho_{1}}\right) \mathrm{v}_{1}$
Mechanical Properties of Fluids

142679 The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be

1 $\frac{\mathrm{d}_{0}}{\mathrm{~d}}$
2 $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
3 $\frac{\mathrm{d}-\mathrm{d}_{0}}{\mathrm{~d}}$
4 $\frac{\mathrm{dd}_{0}}{\mathrm{~d} \cdot \mathrm{d}_{0}}$
Mechanical Properties of Fluids

142686 A glass flask having mass $390 \mathrm{~g}$ and an interior volume of $500 \mathrm{~cm}^{3}$ floats on water. When it is less than half filled with water. The density of material of the flask is

1 $0.8 \mathrm{~g} / \mathrm{cc}$
2 $2.8 \mathrm{~g} / \mathrm{cc}$
3 $1.8 \mathrm{~g} / \mathrm{cc}$
4 $0.28 \mathrm{~g} / \mathrm{cc}$
Mechanical Properties of Fluids

142687 The speed of the water in a river is $v$ near the surface. If the coefficient of viscosity of water is $\eta$ and the depth of the river is $H$, then the shearing stress between the horizontal layers of water is

1 $\eta \frac{\mathrm{H}}{\mathrm{v}}$
2 $\eta \frac{\mathrm{v}}{\mathrm{H}}$
3 $\frac{\mathrm{v}}{\eta \mathrm{H}}$
4 $\eta \mathrm{vH}$
Mechanical Properties of Fluids

142677 A piece of solid weights $120 \mathrm{~g}$ in air, $80 \mathrm{~g}$ in water and $60 \mathrm{~g}$ in a liquid. The relative density of the solid and that of the liquid are respectively,

1 3,2
2 $2, \frac{3}{4}$
3 $\frac{3}{2}, 2$
4 4,3
5 $3, \frac{3}{2}$
Mechanical Properties of Fluids

142678 A sphere of radius $R$ and density $\rho_{1}$ is dropped in a liquid of density $\sigma$. Its terminal velocity is $v_{1}$. If another sphere of radius $R$ and density $\rho_{2}$ is dropped in the same liquid, its terminal velocity will be

1 $\left(\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}\right) \mathrm{v}_{1}$
2 $\left(\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}\right) \mathrm{v}_{1}$
3 $\left(\frac{\rho_{1}}{\rho_{2}}\right) \mathrm{v}_{1}$
4 $\left(\frac{\rho_{2}}{\rho_{1}}\right) \mathrm{v}_{1}$
Mechanical Properties of Fluids

142679 The fraction of a floating object of volume $V_{0}$ and density $d_{0}$ above the surface of a liquid of density $d$ will be

1 $\frac{\mathrm{d}_{0}}{\mathrm{~d}}$
2 $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
3 $\frac{\mathrm{d}-\mathrm{d}_{0}}{\mathrm{~d}}$
4 $\frac{\mathrm{dd}_{0}}{\mathrm{~d} \cdot \mathrm{d}_{0}}$
Mechanical Properties of Fluids

142686 A glass flask having mass $390 \mathrm{~g}$ and an interior volume of $500 \mathrm{~cm}^{3}$ floats on water. When it is less than half filled with water. The density of material of the flask is

1 $0.8 \mathrm{~g} / \mathrm{cc}$
2 $2.8 \mathrm{~g} / \mathrm{cc}$
3 $1.8 \mathrm{~g} / \mathrm{cc}$
4 $0.28 \mathrm{~g} / \mathrm{cc}$
Mechanical Properties of Fluids

142687 The speed of the water in a river is $v$ near the surface. If the coefficient of viscosity of water is $\eta$ and the depth of the river is $H$, then the shearing stress between the horizontal layers of water is

1 $\eta \frac{\mathrm{H}}{\mathrm{v}}$
2 $\eta \frac{\mathrm{v}}{\mathrm{H}}$
3 $\frac{\mathrm{v}}{\eta \mathrm{H}}$
4 $\eta \mathrm{vH}$