141110 A horizontal aluminium rod of diameter $4 \mathrm{~cm}$ projected $6 \mathrm{~cm}$ from a wall. An object of mass $400 \pi \mathrm{kg}$ is suspended from the end of the rod. The shearing modulus of aluminium is $3.0 \times$ $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The vertical deflection of the end of the $\operatorname{rod}$ is $\left(\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141110 A horizontal aluminium rod of diameter $4 \mathrm{~cm}$ projected $6 \mathrm{~cm}$ from a wall. An object of mass $400 \pi \mathrm{kg}$ is suspended from the end of the rod. The shearing modulus of aluminium is $3.0 \times$ $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The vertical deflection of the end of the $\operatorname{rod}$ is $\left(\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141110 A horizontal aluminium rod of diameter $4 \mathrm{~cm}$ projected $6 \mathrm{~cm}$ from a wall. An object of mass $400 \pi \mathrm{kg}$ is suspended from the end of the rod. The shearing modulus of aluminium is $3.0 \times$ $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The vertical deflection of the end of the $\operatorname{rod}$ is $\left(\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141110 A horizontal aluminium rod of diameter $4 \mathrm{~cm}$ projected $6 \mathrm{~cm}$ from a wall. An object of mass $400 \pi \mathrm{kg}$ is suspended from the end of the rod. The shearing modulus of aluminium is $3.0 \times$ $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The vertical deflection of the end of the $\operatorname{rod}$ is $\left(\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141110 A horizontal aluminium rod of diameter $4 \mathrm{~cm}$ projected $6 \mathrm{~cm}$ from a wall. An object of mass $400 \pi \mathrm{kg}$ is suspended from the end of the rod. The shearing modulus of aluminium is $3.0 \times$ $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The vertical deflection of the end of the $\operatorname{rod}$ is $\left(\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$