140976 The area of cross-section of a wire of length 2.1 $\mathrm{m}$ is $2 \mathrm{~mm}^{2}$. Find the increase in its length when it is loaded with $0.5 \mathrm{~kg}$. The Young's Modulus of material of wire is $11 \times 10^{10} \mathrm{Nm}^{-2}$. $(\mathrm{g}$ $=10 \mathrm{~m} \mathrm{~s}^{-2}$ )
140977 At $50^{\circ} \mathrm{C}$ a brass rod and a steel rod of equal length $50 \mathrm{~cm}$ each and equal diameters are joined together. The composite rod is heated to $250^{\circ} \mathrm{C}$. Find the change in length of the composite rod. $\left[\alpha_{\text {Brass }}=20 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right.$ and $\alpha_{\text {steel }}$ $=12 \times 10^{-6}{ }^{0} \mathrm{C}^{-1}$ ]
140976 The area of cross-section of a wire of length 2.1 $\mathrm{m}$ is $2 \mathrm{~mm}^{2}$. Find the increase in its length when it is loaded with $0.5 \mathrm{~kg}$. The Young's Modulus of material of wire is $11 \times 10^{10} \mathrm{Nm}^{-2}$. $(\mathrm{g}$ $=10 \mathrm{~m} \mathrm{~s}^{-2}$ )
140977 At $50^{\circ} \mathrm{C}$ a brass rod and a steel rod of equal length $50 \mathrm{~cm}$ each and equal diameters are joined together. The composite rod is heated to $250^{\circ} \mathrm{C}$. Find the change in length of the composite rod. $\left[\alpha_{\text {Brass }}=20 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right.$ and $\alpha_{\text {steel }}$ $=12 \times 10^{-6}{ }^{0} \mathrm{C}^{-1}$ ]
140976 The area of cross-section of a wire of length 2.1 $\mathrm{m}$ is $2 \mathrm{~mm}^{2}$. Find the increase in its length when it is loaded with $0.5 \mathrm{~kg}$. The Young's Modulus of material of wire is $11 \times 10^{10} \mathrm{Nm}^{-2}$. $(\mathrm{g}$ $=10 \mathrm{~m} \mathrm{~s}^{-2}$ )
140977 At $50^{\circ} \mathrm{C}$ a brass rod and a steel rod of equal length $50 \mathrm{~cm}$ each and equal diameters are joined together. The composite rod is heated to $250^{\circ} \mathrm{C}$. Find the change in length of the composite rod. $\left[\alpha_{\text {Brass }}=20 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right.$ and $\alpha_{\text {steel }}$ $=12 \times 10^{-6}{ }^{0} \mathrm{C}^{-1}$ ]
140976 The area of cross-section of a wire of length 2.1 $\mathrm{m}$ is $2 \mathrm{~mm}^{2}$. Find the increase in its length when it is loaded with $0.5 \mathrm{~kg}$. The Young's Modulus of material of wire is $11 \times 10^{10} \mathrm{Nm}^{-2}$. $(\mathrm{g}$ $=10 \mathrm{~m} \mathrm{~s}^{-2}$ )
140977 At $50^{\circ} \mathrm{C}$ a brass rod and a steel rod of equal length $50 \mathrm{~cm}$ each and equal diameters are joined together. The composite rod is heated to $250^{\circ} \mathrm{C}$. Find the change in length of the composite rod. $\left[\alpha_{\text {Brass }}=20 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right.$ and $\alpha_{\text {steel }}$ $=12 \times 10^{-6}{ }^{0} \mathrm{C}^{-1}$ ]