01. Young's Modulus and Bulk Modulus and Change in Length
Mechanical Properties of Solids

141026 The average depth of Indian Ocean is about $3000 \mathrm{~m}$. The fractional compression, $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ of water at the bottom of the water $=2.2 \times 10^{9}$ $\mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ) is

1 $0.82 \%$
2 $0.91 \%$
3 $1.36 \%$
4 $1.24 \%$
5 $1.52 \%$
Mechanical Properties of Solids

141027 The compressibility of water is $6 \times 10^{-10} \mathrm{~N}^{-1} \mathrm{~m}^{2}$. If one litre is subjected to a pressure of $4 \times 10^{\dagger}$ $\mathrm{Nm}^{-2}$, the decrease in its volume is

1 $2.4 \mathrm{cc}$
2 $10 \mathrm{cc}$
3 $24 \mathrm{cc}$
4 $15 \mathrm{cc}$
5 $12 \mathrm{cc}$
Mechanical Properties of Solids

141028 The Young's modulus of the material of a wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$. If the elongation strain is $1 \%$ then the energy stored in the wire per unit volume in $\mathbf{J m}^{-3}$ is

1 $10^{6}$
2 $10^{8}$
3 $2 \times 10^{6}$
4 $2 \times 10^{8}$
5 $0.5 \times 10^{6}$
Mechanical Properties of Solids

141029 If the volume of a block of aluminium is decreased by $1 \%$, the pressure (stress) on its surface is increased by (Bulk modulus of $\mathrm{A} l=$ $7.5 \times 10^{10} \mathrm{Nm}^{-2}$ )

1 $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
2 $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
3 $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
4 $7.5 \times 10^{4} \mathrm{Nm}^{-2}$
5 $7.5 \times 10^{2} \mathrm{Nm}^{-2}$
Mechanical Properties of Solids

141030 A work of $2 \times 10^{-2} \mathrm{~J}$ is done on a wire of length $50 \mathrm{~cm}$ and area of cross-section $0.5 \mathrm{~mm}^{2}$. If the Young's modulus of the material of the wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$, then the wire must be :

1 elongated to $50.1414 \mathrm{~cm}$
2 contracted by $2.0 \mathrm{~mm}$
3 stretched by $0.707 \mathrm{~mm}$
4 of length changed to $49.293 \mathrm{~cm}$
5 of length changed to $50.2 \mathrm{~cm}$
Mechanical Properties of Solids

141026 The average depth of Indian Ocean is about $3000 \mathrm{~m}$. The fractional compression, $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ of water at the bottom of the water $=2.2 \times 10^{9}$ $\mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ) is

1 $0.82 \%$
2 $0.91 \%$
3 $1.36 \%$
4 $1.24 \%$
5 $1.52 \%$
Mechanical Properties of Solids

141027 The compressibility of water is $6 \times 10^{-10} \mathrm{~N}^{-1} \mathrm{~m}^{2}$. If one litre is subjected to a pressure of $4 \times 10^{\dagger}$ $\mathrm{Nm}^{-2}$, the decrease in its volume is

1 $2.4 \mathrm{cc}$
2 $10 \mathrm{cc}$
3 $24 \mathrm{cc}$
4 $15 \mathrm{cc}$
5 $12 \mathrm{cc}$
Mechanical Properties of Solids

141028 The Young's modulus of the material of a wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$. If the elongation strain is $1 \%$ then the energy stored in the wire per unit volume in $\mathbf{J m}^{-3}$ is

1 $10^{6}$
2 $10^{8}$
3 $2 \times 10^{6}$
4 $2 \times 10^{8}$
5 $0.5 \times 10^{6}$
Mechanical Properties of Solids

141029 If the volume of a block of aluminium is decreased by $1 \%$, the pressure (stress) on its surface is increased by (Bulk modulus of $\mathrm{A} l=$ $7.5 \times 10^{10} \mathrm{Nm}^{-2}$ )

1 $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
2 $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
3 $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
4 $7.5 \times 10^{4} \mathrm{Nm}^{-2}$
5 $7.5 \times 10^{2} \mathrm{Nm}^{-2}$
Mechanical Properties of Solids

141030 A work of $2 \times 10^{-2} \mathrm{~J}$ is done on a wire of length $50 \mathrm{~cm}$ and area of cross-section $0.5 \mathrm{~mm}^{2}$. If the Young's modulus of the material of the wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$, then the wire must be :

1 elongated to $50.1414 \mathrm{~cm}$
2 contracted by $2.0 \mathrm{~mm}$
3 stretched by $0.707 \mathrm{~mm}$
4 of length changed to $49.293 \mathrm{~cm}$
5 of length changed to $50.2 \mathrm{~cm}$
Mechanical Properties of Solids

141026 The average depth of Indian Ocean is about $3000 \mathrm{~m}$. The fractional compression, $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ of water at the bottom of the water $=2.2 \times 10^{9}$ $\mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ) is

1 $0.82 \%$
2 $0.91 \%$
3 $1.36 \%$
4 $1.24 \%$
5 $1.52 \%$
Mechanical Properties of Solids

141027 The compressibility of water is $6 \times 10^{-10} \mathrm{~N}^{-1} \mathrm{~m}^{2}$. If one litre is subjected to a pressure of $4 \times 10^{\dagger}$ $\mathrm{Nm}^{-2}$, the decrease in its volume is

1 $2.4 \mathrm{cc}$
2 $10 \mathrm{cc}$
3 $24 \mathrm{cc}$
4 $15 \mathrm{cc}$
5 $12 \mathrm{cc}$
Mechanical Properties of Solids

141028 The Young's modulus of the material of a wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$. If the elongation strain is $1 \%$ then the energy stored in the wire per unit volume in $\mathbf{J m}^{-3}$ is

1 $10^{6}$
2 $10^{8}$
3 $2 \times 10^{6}$
4 $2 \times 10^{8}$
5 $0.5 \times 10^{6}$
Mechanical Properties of Solids

141029 If the volume of a block of aluminium is decreased by $1 \%$, the pressure (stress) on its surface is increased by (Bulk modulus of $\mathrm{A} l=$ $7.5 \times 10^{10} \mathrm{Nm}^{-2}$ )

1 $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
2 $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
3 $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
4 $7.5 \times 10^{4} \mathrm{Nm}^{-2}$
5 $7.5 \times 10^{2} \mathrm{Nm}^{-2}$
Mechanical Properties of Solids

141030 A work of $2 \times 10^{-2} \mathrm{~J}$ is done on a wire of length $50 \mathrm{~cm}$ and area of cross-section $0.5 \mathrm{~mm}^{2}$. If the Young's modulus of the material of the wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$, then the wire must be :

1 elongated to $50.1414 \mathrm{~cm}$
2 contracted by $2.0 \mathrm{~mm}$
3 stretched by $0.707 \mathrm{~mm}$
4 of length changed to $49.293 \mathrm{~cm}$
5 of length changed to $50.2 \mathrm{~cm}$
Mechanical Properties of Solids

141026 The average depth of Indian Ocean is about $3000 \mathrm{~m}$. The fractional compression, $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ of water at the bottom of the water $=2.2 \times 10^{9}$ $\mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ) is

1 $0.82 \%$
2 $0.91 \%$
3 $1.36 \%$
4 $1.24 \%$
5 $1.52 \%$
Mechanical Properties of Solids

141027 The compressibility of water is $6 \times 10^{-10} \mathrm{~N}^{-1} \mathrm{~m}^{2}$. If one litre is subjected to a pressure of $4 \times 10^{\dagger}$ $\mathrm{Nm}^{-2}$, the decrease in its volume is

1 $2.4 \mathrm{cc}$
2 $10 \mathrm{cc}$
3 $24 \mathrm{cc}$
4 $15 \mathrm{cc}$
5 $12 \mathrm{cc}$
Mechanical Properties of Solids

141028 The Young's modulus of the material of a wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$. If the elongation strain is $1 \%$ then the energy stored in the wire per unit volume in $\mathbf{J m}^{-3}$ is

1 $10^{6}$
2 $10^{8}$
3 $2 \times 10^{6}$
4 $2 \times 10^{8}$
5 $0.5 \times 10^{6}$
Mechanical Properties of Solids

141029 If the volume of a block of aluminium is decreased by $1 \%$, the pressure (stress) on its surface is increased by (Bulk modulus of $\mathrm{A} l=$ $7.5 \times 10^{10} \mathrm{Nm}^{-2}$ )

1 $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
2 $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
3 $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
4 $7.5 \times 10^{4} \mathrm{Nm}^{-2}$
5 $7.5 \times 10^{2} \mathrm{Nm}^{-2}$
Mechanical Properties of Solids

141030 A work of $2 \times 10^{-2} \mathrm{~J}$ is done on a wire of length $50 \mathrm{~cm}$ and area of cross-section $0.5 \mathrm{~mm}^{2}$. If the Young's modulus of the material of the wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$, then the wire must be :

1 elongated to $50.1414 \mathrm{~cm}$
2 contracted by $2.0 \mathrm{~mm}$
3 stretched by $0.707 \mathrm{~mm}$
4 of length changed to $49.293 \mathrm{~cm}$
5 of length changed to $50.2 \mathrm{~cm}$
Mechanical Properties of Solids

141026 The average depth of Indian Ocean is about $3000 \mathrm{~m}$. The fractional compression, $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ of water at the bottom of the water $=2.2 \times 10^{9}$ $\mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ) is

1 $0.82 \%$
2 $0.91 \%$
3 $1.36 \%$
4 $1.24 \%$
5 $1.52 \%$
Mechanical Properties of Solids

141027 The compressibility of water is $6 \times 10^{-10} \mathrm{~N}^{-1} \mathrm{~m}^{2}$. If one litre is subjected to a pressure of $4 \times 10^{\dagger}$ $\mathrm{Nm}^{-2}$, the decrease in its volume is

1 $2.4 \mathrm{cc}$
2 $10 \mathrm{cc}$
3 $24 \mathrm{cc}$
4 $15 \mathrm{cc}$
5 $12 \mathrm{cc}$
Mechanical Properties of Solids

141028 The Young's modulus of the material of a wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$. If the elongation strain is $1 \%$ then the energy stored in the wire per unit volume in $\mathbf{J m}^{-3}$ is

1 $10^{6}$
2 $10^{8}$
3 $2 \times 10^{6}$
4 $2 \times 10^{8}$
5 $0.5 \times 10^{6}$
Mechanical Properties of Solids

141029 If the volume of a block of aluminium is decreased by $1 \%$, the pressure (stress) on its surface is increased by (Bulk modulus of $\mathrm{A} l=$ $7.5 \times 10^{10} \mathrm{Nm}^{-2}$ )

1 $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
2 $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
3 $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
4 $7.5 \times 10^{4} \mathrm{Nm}^{-2}$
5 $7.5 \times 10^{2} \mathrm{Nm}^{-2}$
Mechanical Properties of Solids

141030 A work of $2 \times 10^{-2} \mathrm{~J}$ is done on a wire of length $50 \mathrm{~cm}$ and area of cross-section $0.5 \mathrm{~mm}^{2}$. If the Young's modulus of the material of the wire is $2 \times 10^{10} \mathrm{Nm}^{-2}$, then the wire must be :

1 elongated to $50.1414 \mathrm{~cm}$
2 contracted by $2.0 \mathrm{~mm}$
3 stretched by $0.707 \mathrm{~mm}$
4 of length changed to $49.293 \mathrm{~cm}$
5 of length changed to $50.2 \mathrm{~cm}$