00. Elasticity, Stress, Strain and Hooke's law
Mechanical Properties of Solids

140907 An iron rod of length $2 \mathrm{~m}$ and cross- sectional area of $50 \mathrm{~mm}^{2}$ stretched by $0.5 \mathrm{~mm}$, when a mass of $250 \mathrm{~kg}$ is hung from its lower end. Young's modulus of iron rod is

1 $19.6 \times 10^{20} \mathrm{~N} / \mathrm{m}^{2}$
2 $19.6 \times 10^{18} \mathrm{~N} / \mathrm{m}^{2}$
3 $19.6 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
4 $19.6 \times 10^{15} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Solids

140908 A copper wire of length $2.2 \mathrm{~m}$ and a steel wire of length $1.6 \mathrm{~m}$, both of diameter $3.0 \mathrm{~mm}$ are connected end to end. When stretched by a force, the elongation in length $0.50 \mathrm{~mm}$ is produced in the copper wire. The stretching force is
$\left(Y_{\text {cu }}=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, Y_{\text {steel }}=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$

1 $5.4 \times 10^{2} \mathrm{~N}$
2 $3.6 \times 10^{2} \mathrm{~N}$
3 $2.4 \times 10^{2} \mathrm{~N}$
4 $1.8 \times 10^{2} \mathrm{~N}$
Mechanical Properties of Solids

140909 Two rods copper and brass having initial lengths $l_{1}$ and $l_{2}$ respectively are connected together to form a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion of copper and brass are $\alpha_{c}$ and $\alpha_{b}$ respectively. If the length of each rod increases by same amount when their temperatures are raised by $\mathrm{t}^{\circ} \mathrm{C}$, then what is $\frac{l_{1}}{l_{1}+l_{2}}$ equal to?

1 $\frac{\alpha_{c}}{\alpha_{b}}$
2 $\frac{\alpha_{c}}{\alpha_{c}+\alpha_{b}}$
3 $\frac{\alpha_{b}}{\alpha_{c}}$
4 $\frac{\alpha_{b}}{\alpha_{c}+\alpha_{b}}$
Mechanical Properties of Solids

140913 A force (F) applied on a wire increases its length by $2 \times 10^{-3} \mathrm{~m}$, to increase the wire's length by $4 \times 10^{-3} \mathrm{~m}$, the applied force will be

1 $4 \mathrm{~F}$
2 $3 \mathrm{~F}$
3 $2 \mathrm{~F}$
4 $\mathrm{F}$
Mechanical Properties of Solids

140907 An iron rod of length $2 \mathrm{~m}$ and cross- sectional area of $50 \mathrm{~mm}^{2}$ stretched by $0.5 \mathrm{~mm}$, when a mass of $250 \mathrm{~kg}$ is hung from its lower end. Young's modulus of iron rod is

1 $19.6 \times 10^{20} \mathrm{~N} / \mathrm{m}^{2}$
2 $19.6 \times 10^{18} \mathrm{~N} / \mathrm{m}^{2}$
3 $19.6 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
4 $19.6 \times 10^{15} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Solids

140908 A copper wire of length $2.2 \mathrm{~m}$ and a steel wire of length $1.6 \mathrm{~m}$, both of diameter $3.0 \mathrm{~mm}$ are connected end to end. When stretched by a force, the elongation in length $0.50 \mathrm{~mm}$ is produced in the copper wire. The stretching force is
$\left(Y_{\text {cu }}=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, Y_{\text {steel }}=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$

1 $5.4 \times 10^{2} \mathrm{~N}$
2 $3.6 \times 10^{2} \mathrm{~N}$
3 $2.4 \times 10^{2} \mathrm{~N}$
4 $1.8 \times 10^{2} \mathrm{~N}$
Mechanical Properties of Solids

140909 Two rods copper and brass having initial lengths $l_{1}$ and $l_{2}$ respectively are connected together to form a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion of copper and brass are $\alpha_{c}$ and $\alpha_{b}$ respectively. If the length of each rod increases by same amount when their temperatures are raised by $\mathrm{t}^{\circ} \mathrm{C}$, then what is $\frac{l_{1}}{l_{1}+l_{2}}$ equal to?

1 $\frac{\alpha_{c}}{\alpha_{b}}$
2 $\frac{\alpha_{c}}{\alpha_{c}+\alpha_{b}}$
3 $\frac{\alpha_{b}}{\alpha_{c}}$
4 $\frac{\alpha_{b}}{\alpha_{c}+\alpha_{b}}$
Mechanical Properties of Solids

140913 A force (F) applied on a wire increases its length by $2 \times 10^{-3} \mathrm{~m}$, to increase the wire's length by $4 \times 10^{-3} \mathrm{~m}$, the applied force will be

1 $4 \mathrm{~F}$
2 $3 \mathrm{~F}$
3 $2 \mathrm{~F}$
4 $\mathrm{F}$
Mechanical Properties of Solids

140907 An iron rod of length $2 \mathrm{~m}$ and cross- sectional area of $50 \mathrm{~mm}^{2}$ stretched by $0.5 \mathrm{~mm}$, when a mass of $250 \mathrm{~kg}$ is hung from its lower end. Young's modulus of iron rod is

1 $19.6 \times 10^{20} \mathrm{~N} / \mathrm{m}^{2}$
2 $19.6 \times 10^{18} \mathrm{~N} / \mathrm{m}^{2}$
3 $19.6 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
4 $19.6 \times 10^{15} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Solids

140908 A copper wire of length $2.2 \mathrm{~m}$ and a steel wire of length $1.6 \mathrm{~m}$, both of diameter $3.0 \mathrm{~mm}$ are connected end to end. When stretched by a force, the elongation in length $0.50 \mathrm{~mm}$ is produced in the copper wire. The stretching force is
$\left(Y_{\text {cu }}=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, Y_{\text {steel }}=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$

1 $5.4 \times 10^{2} \mathrm{~N}$
2 $3.6 \times 10^{2} \mathrm{~N}$
3 $2.4 \times 10^{2} \mathrm{~N}$
4 $1.8 \times 10^{2} \mathrm{~N}$
Mechanical Properties of Solids

140909 Two rods copper and brass having initial lengths $l_{1}$ and $l_{2}$ respectively are connected together to form a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion of copper and brass are $\alpha_{c}$ and $\alpha_{b}$ respectively. If the length of each rod increases by same amount when their temperatures are raised by $\mathrm{t}^{\circ} \mathrm{C}$, then what is $\frac{l_{1}}{l_{1}+l_{2}}$ equal to?

1 $\frac{\alpha_{c}}{\alpha_{b}}$
2 $\frac{\alpha_{c}}{\alpha_{c}+\alpha_{b}}$
3 $\frac{\alpha_{b}}{\alpha_{c}}$
4 $\frac{\alpha_{b}}{\alpha_{c}+\alpha_{b}}$
Mechanical Properties of Solids

140913 A force (F) applied on a wire increases its length by $2 \times 10^{-3} \mathrm{~m}$, to increase the wire's length by $4 \times 10^{-3} \mathrm{~m}$, the applied force will be

1 $4 \mathrm{~F}$
2 $3 \mathrm{~F}$
3 $2 \mathrm{~F}$
4 $\mathrm{F}$
Mechanical Properties of Solids

140907 An iron rod of length $2 \mathrm{~m}$ and cross- sectional area of $50 \mathrm{~mm}^{2}$ stretched by $0.5 \mathrm{~mm}$, when a mass of $250 \mathrm{~kg}$ is hung from its lower end. Young's modulus of iron rod is

1 $19.6 \times 10^{20} \mathrm{~N} / \mathrm{m}^{2}$
2 $19.6 \times 10^{18} \mathrm{~N} / \mathrm{m}^{2}$
3 $19.6 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
4 $19.6 \times 10^{15} \mathrm{~N} / \mathrm{m}^{2}$
Mechanical Properties of Solids

140908 A copper wire of length $2.2 \mathrm{~m}$ and a steel wire of length $1.6 \mathrm{~m}$, both of diameter $3.0 \mathrm{~mm}$ are connected end to end. When stretched by a force, the elongation in length $0.50 \mathrm{~mm}$ is produced in the copper wire. The stretching force is
$\left(Y_{\text {cu }}=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, Y_{\text {steel }}=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$

1 $5.4 \times 10^{2} \mathrm{~N}$
2 $3.6 \times 10^{2} \mathrm{~N}$
3 $2.4 \times 10^{2} \mathrm{~N}$
4 $1.8 \times 10^{2} \mathrm{~N}$
Mechanical Properties of Solids

140909 Two rods copper and brass having initial lengths $l_{1}$ and $l_{2}$ respectively are connected together to form a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion of copper and brass are $\alpha_{c}$ and $\alpha_{b}$ respectively. If the length of each rod increases by same amount when their temperatures are raised by $\mathrm{t}^{\circ} \mathrm{C}$, then what is $\frac{l_{1}}{l_{1}+l_{2}}$ equal to?

1 $\frac{\alpha_{c}}{\alpha_{b}}$
2 $\frac{\alpha_{c}}{\alpha_{c}+\alpha_{b}}$
3 $\frac{\alpha_{b}}{\alpha_{c}}$
4 $\frac{\alpha_{b}}{\alpha_{c}+\alpha_{b}}$
Mechanical Properties of Solids

140913 A force (F) applied on a wire increases its length by $2 \times 10^{-3} \mathrm{~m}$, to increase the wire's length by $4 \times 10^{-3} \mathrm{~m}$, the applied force will be

1 $4 \mathrm{~F}$
2 $3 \mathrm{~F}$
3 $2 \mathrm{~F}$
4 $\mathrm{F}$