04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
Gravitation

138696 If the radius of a planet is $R$ and its density is $\rho$, the escape velocity from its surface will be

1 $\mathrm{v}_{\mathrm{e}} \propto \rho \mathrm{R}$
2 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\rho} \mathrm{R}$
3 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\frac{\rho}{\mathrm{R}}}$
4 $\mathrm{v}_{\mathrm{e}} \propto \frac{1}{\sqrt{\rho R}}$
Gravitation

138697 The escape velocity from the earth's surface is $11.2 \mathrm{Km} / \mathrm{s}$. If a planet has a radius twice that of the earth and on which the acceleration due to gravity is twice that on the earth, then the escape velocity on this planet will be

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $5.6 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $33.6 \mathrm{~km} / \mathrm{s}$
Gravitation

138698 A satellite revolves very near to the earth surface. Its speed should be around

1 $5 \mathrm{~km} / \mathrm{s}$
2 $8 \mathrm{~km} / \mathrm{s}$
3 $2 \mathrm{~km} / \mathrm{s}$
4 $11 \mathrm{~km} / \mathrm{s}$
Gravitation

138699 For a given density of a planet, the orbital speed of satellite near the surface of the planet of radius $R$ is proportional to

1 $R^{1 / 2}$
2 $\mathrm{R}^{3 / 2}$
3 $\mathrm{R}^{-1 / 2}$
4 $\mathrm{R}^{0}$
Gravitation

138696 If the radius of a planet is $R$ and its density is $\rho$, the escape velocity from its surface will be

1 $\mathrm{v}_{\mathrm{e}} \propto \rho \mathrm{R}$
2 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\rho} \mathrm{R}$
3 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\frac{\rho}{\mathrm{R}}}$
4 $\mathrm{v}_{\mathrm{e}} \propto \frac{1}{\sqrt{\rho R}}$
Gravitation

138697 The escape velocity from the earth's surface is $11.2 \mathrm{Km} / \mathrm{s}$. If a planet has a radius twice that of the earth and on which the acceleration due to gravity is twice that on the earth, then the escape velocity on this planet will be

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $5.6 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $33.6 \mathrm{~km} / \mathrm{s}$
Gravitation

138698 A satellite revolves very near to the earth surface. Its speed should be around

1 $5 \mathrm{~km} / \mathrm{s}$
2 $8 \mathrm{~km} / \mathrm{s}$
3 $2 \mathrm{~km} / \mathrm{s}$
4 $11 \mathrm{~km} / \mathrm{s}$
Gravitation

138699 For a given density of a planet, the orbital speed of satellite near the surface of the planet of radius $R$ is proportional to

1 $R^{1 / 2}$
2 $\mathrm{R}^{3 / 2}$
3 $\mathrm{R}^{-1 / 2}$
4 $\mathrm{R}^{0}$
Gravitation

138696 If the radius of a planet is $R$ and its density is $\rho$, the escape velocity from its surface will be

1 $\mathrm{v}_{\mathrm{e}} \propto \rho \mathrm{R}$
2 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\rho} \mathrm{R}$
3 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\frac{\rho}{\mathrm{R}}}$
4 $\mathrm{v}_{\mathrm{e}} \propto \frac{1}{\sqrt{\rho R}}$
Gravitation

138697 The escape velocity from the earth's surface is $11.2 \mathrm{Km} / \mathrm{s}$. If a planet has a radius twice that of the earth and on which the acceleration due to gravity is twice that on the earth, then the escape velocity on this planet will be

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $5.6 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $33.6 \mathrm{~km} / \mathrm{s}$
Gravitation

138698 A satellite revolves very near to the earth surface. Its speed should be around

1 $5 \mathrm{~km} / \mathrm{s}$
2 $8 \mathrm{~km} / \mathrm{s}$
3 $2 \mathrm{~km} / \mathrm{s}$
4 $11 \mathrm{~km} / \mathrm{s}$
Gravitation

138699 For a given density of a planet, the orbital speed of satellite near the surface of the planet of radius $R$ is proportional to

1 $R^{1 / 2}$
2 $\mathrm{R}^{3 / 2}$
3 $\mathrm{R}^{-1 / 2}$
4 $\mathrm{R}^{0}$
Gravitation

138696 If the radius of a planet is $R$ and its density is $\rho$, the escape velocity from its surface will be

1 $\mathrm{v}_{\mathrm{e}} \propto \rho \mathrm{R}$
2 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\rho} \mathrm{R}$
3 $\mathrm{v}_{\mathrm{e}} \propto \sqrt{\frac{\rho}{\mathrm{R}}}$
4 $\mathrm{v}_{\mathrm{e}} \propto \frac{1}{\sqrt{\rho R}}$
Gravitation

138697 The escape velocity from the earth's surface is $11.2 \mathrm{Km} / \mathrm{s}$. If a planet has a radius twice that of the earth and on which the acceleration due to gravity is twice that on the earth, then the escape velocity on this planet will be

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $5.6 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $33.6 \mathrm{~km} / \mathrm{s}$
Gravitation

138698 A satellite revolves very near to the earth surface. Its speed should be around

1 $5 \mathrm{~km} / \mathrm{s}$
2 $8 \mathrm{~km} / \mathrm{s}$
3 $2 \mathrm{~km} / \mathrm{s}$
4 $11 \mathrm{~km} / \mathrm{s}$
Gravitation

138699 For a given density of a planet, the orbital speed of satellite near the surface of the planet of radius $R$ is proportional to

1 $R^{1 / 2}$
2 $\mathrm{R}^{3 / 2}$
3 $\mathrm{R}^{-1 / 2}$
4 $\mathrm{R}^{0}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here