04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
Gravitation

138686 The escape velocity from a planet is $V_{\mathrm{e}}$. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

1 $\mathrm{v}_{\mathrm{e}}$
2 $\mathrm{v}_{\mathrm{e}} / \sqrt{2}$
3 $\mathrm{v}_{\mathrm{e}} / 2$
4 Zero
Gravitation

138687 Two planets $A$ and $B$ have the same material density. If the radius of $A$ is twice that of $B$, then the ratio of the escape velocity $v_{A} / v_{B}$ is

1 2
2 $\sqrt{2}$
3 $1 / \sqrt{2}$
4 $1 / 2$
Gravitation

138689 A satellite of mass $m$ is circulating around the earth with constant angular velocity. If the radius of the orbit is $R_{0}$ and mass of the Earth is $M$, the angular momentum of satellite about the centre of Earth is

1 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
2 $\mathrm{m} \sqrt{\mathrm{GMR}_{\mathrm{o}}}$
3 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
4 $\mathrm{M} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
Gravitation

138690 The acceleration due to gravity on the surface of the moon is $1 / 6$ that on the surface of earth and the diameter of the moon is one-fourth that of earth. The ratio of escape velocities on earth and moon will be

1 $\frac{\sqrt{6}}{2}$
2 $\sqrt{24}$
3 3
4 $\frac{\sqrt{3}}{2}$
Gravitation

138686 The escape velocity from a planet is $V_{\mathrm{e}}$. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

1 $\mathrm{v}_{\mathrm{e}}$
2 $\mathrm{v}_{\mathrm{e}} / \sqrt{2}$
3 $\mathrm{v}_{\mathrm{e}} / 2$
4 Zero
Gravitation

138687 Two planets $A$ and $B$ have the same material density. If the radius of $A$ is twice that of $B$, then the ratio of the escape velocity $v_{A} / v_{B}$ is

1 2
2 $\sqrt{2}$
3 $1 / \sqrt{2}$
4 $1 / 2$
Gravitation

138689 A satellite of mass $m$ is circulating around the earth with constant angular velocity. If the radius of the orbit is $R_{0}$ and mass of the Earth is $M$, the angular momentum of satellite about the centre of Earth is

1 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
2 $\mathrm{m} \sqrt{\mathrm{GMR}_{\mathrm{o}}}$
3 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
4 $\mathrm{M} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
Gravitation

138690 The acceleration due to gravity on the surface of the moon is $1 / 6$ that on the surface of earth and the diameter of the moon is one-fourth that of earth. The ratio of escape velocities on earth and moon will be

1 $\frac{\sqrt{6}}{2}$
2 $\sqrt{24}$
3 3
4 $\frac{\sqrt{3}}{2}$
Gravitation

138686 The escape velocity from a planet is $V_{\mathrm{e}}$. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

1 $\mathrm{v}_{\mathrm{e}}$
2 $\mathrm{v}_{\mathrm{e}} / \sqrt{2}$
3 $\mathrm{v}_{\mathrm{e}} / 2$
4 Zero
Gravitation

138687 Two planets $A$ and $B$ have the same material density. If the radius of $A$ is twice that of $B$, then the ratio of the escape velocity $v_{A} / v_{B}$ is

1 2
2 $\sqrt{2}$
3 $1 / \sqrt{2}$
4 $1 / 2$
Gravitation

138689 A satellite of mass $m$ is circulating around the earth with constant angular velocity. If the radius of the orbit is $R_{0}$ and mass of the Earth is $M$, the angular momentum of satellite about the centre of Earth is

1 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
2 $\mathrm{m} \sqrt{\mathrm{GMR}_{\mathrm{o}}}$
3 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
4 $\mathrm{M} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
Gravitation

138690 The acceleration due to gravity on the surface of the moon is $1 / 6$ that on the surface of earth and the diameter of the moon is one-fourth that of earth. The ratio of escape velocities on earth and moon will be

1 $\frac{\sqrt{6}}{2}$
2 $\sqrt{24}$
3 3
4 $\frac{\sqrt{3}}{2}$
Gravitation

138686 The escape velocity from a planet is $V_{\mathrm{e}}$. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

1 $\mathrm{v}_{\mathrm{e}}$
2 $\mathrm{v}_{\mathrm{e}} / \sqrt{2}$
3 $\mathrm{v}_{\mathrm{e}} / 2$
4 Zero
Gravitation

138687 Two planets $A$ and $B$ have the same material density. If the radius of $A$ is twice that of $B$, then the ratio of the escape velocity $v_{A} / v_{B}$ is

1 2
2 $\sqrt{2}$
3 $1 / \sqrt{2}$
4 $1 / 2$
Gravitation

138689 A satellite of mass $m$ is circulating around the earth with constant angular velocity. If the radius of the orbit is $R_{0}$ and mass of the Earth is $M$, the angular momentum of satellite about the centre of Earth is

1 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
2 $\mathrm{m} \sqrt{\mathrm{GMR}_{\mathrm{o}}}$
3 $\mathrm{m} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
4 $\mathrm{M} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{o}}}}$
Gravitation

138690 The acceleration due to gravity on the surface of the moon is $1 / 6$ that on the surface of earth and the diameter of the moon is one-fourth that of earth. The ratio of escape velocities on earth and moon will be

1 $\frac{\sqrt{6}}{2}$
2 $\sqrt{24}$
3 3
4 $\frac{\sqrt{3}}{2}$