03. Kepler's Law of Planetary Motion
Gravitation

138644 The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes $3 R$ will be:

1 $\sqrt{3}$ years
2 3 years
3 8 years
4 $3 \sqrt{3}$ years
Gravitation

138646 A satellite is to be placed in equatorial geostationary orbit around the Earth for communication purpose. The height of such satellite is
$\left(M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6400 \mathrm{~km}\right)$

1 $3.57 \times 10^{8} \mathrm{~m}$
2 $3.57 \times 10^{7} \mathrm{~m}$
3 $3.57 \times 10^{5} \mathrm{~m}$
4 $3.57 \times 10^{6} \mathrm{~m}$
Gravitation

138647 A planet is revolving round the sun of mass ' $M$ ' in an elliptical orbit with semi-major axis ' $a$ '. The speed of the planer when it is a distance ' $r$ ' from the sun is. (G - Universal gravitational constant)

1 $\sqrt{\mathrm{GM}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
2 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
3 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{2}{\mathrm{a}}\right]}$
4 $\sqrt{\frac{\mathrm{GMr}}{2 \mathrm{a}}}$
Gravitation

138648 The time period of moon around the earth is 28 days. If the mass of the earth is doubled, without any change in the distance of the moon from the earth. New time period of revolution of the moon is

1 $28 \sqrt{2}$ days
2 7 days
3 $14 \sqrt{2}$ days
4 14 days
Gravitation

138649 A number of planets are revolving around the Sun. Time period is ' $T$ ' and average orbital radius of a planet is ' $R$ '. A graph is drawn between $\log T$ on the $\mathrm{Y}$-axis and $\log \mathrm{R}$ on the $\mathrm{X}$-axis with the origin at $(0,0)$. The graph is a

1 Straight line with slope $\frac{3}{2}$ and passing through origin
2 Straight line with slope $\frac{3}{2}$ and not passing through origin
3 Parabola
4 Ellipse
Gravitation

138644 The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes $3 R$ will be:

1 $\sqrt{3}$ years
2 3 years
3 8 years
4 $3 \sqrt{3}$ years
Gravitation

138646 A satellite is to be placed in equatorial geostationary orbit around the Earth for communication purpose. The height of such satellite is
$\left(M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6400 \mathrm{~km}\right)$

1 $3.57 \times 10^{8} \mathrm{~m}$
2 $3.57 \times 10^{7} \mathrm{~m}$
3 $3.57 \times 10^{5} \mathrm{~m}$
4 $3.57 \times 10^{6} \mathrm{~m}$
Gravitation

138647 A planet is revolving round the sun of mass ' $M$ ' in an elliptical orbit with semi-major axis ' $a$ '. The speed of the planer when it is a distance ' $r$ ' from the sun is. (G - Universal gravitational constant)

1 $\sqrt{\mathrm{GM}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
2 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
3 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{2}{\mathrm{a}}\right]}$
4 $\sqrt{\frac{\mathrm{GMr}}{2 \mathrm{a}}}$
Gravitation

138648 The time period of moon around the earth is 28 days. If the mass of the earth is doubled, without any change in the distance of the moon from the earth. New time period of revolution of the moon is

1 $28 \sqrt{2}$ days
2 7 days
3 $14 \sqrt{2}$ days
4 14 days
Gravitation

138649 A number of planets are revolving around the Sun. Time period is ' $T$ ' and average orbital radius of a planet is ' $R$ '. A graph is drawn between $\log T$ on the $\mathrm{Y}$-axis and $\log \mathrm{R}$ on the $\mathrm{X}$-axis with the origin at $(0,0)$. The graph is a

1 Straight line with slope $\frac{3}{2}$ and passing through origin
2 Straight line with slope $\frac{3}{2}$ and not passing through origin
3 Parabola
4 Ellipse
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138644 The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes $3 R$ will be:

1 $\sqrt{3}$ years
2 3 years
3 8 years
4 $3 \sqrt{3}$ years
Gravitation

138646 A satellite is to be placed in equatorial geostationary orbit around the Earth for communication purpose. The height of such satellite is
$\left(M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6400 \mathrm{~km}\right)$

1 $3.57 \times 10^{8} \mathrm{~m}$
2 $3.57 \times 10^{7} \mathrm{~m}$
3 $3.57 \times 10^{5} \mathrm{~m}$
4 $3.57 \times 10^{6} \mathrm{~m}$
Gravitation

138647 A planet is revolving round the sun of mass ' $M$ ' in an elliptical orbit with semi-major axis ' $a$ '. The speed of the planer when it is a distance ' $r$ ' from the sun is. (G - Universal gravitational constant)

1 $\sqrt{\mathrm{GM}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
2 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
3 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{2}{\mathrm{a}}\right]}$
4 $\sqrt{\frac{\mathrm{GMr}}{2 \mathrm{a}}}$
Gravitation

138648 The time period of moon around the earth is 28 days. If the mass of the earth is doubled, without any change in the distance of the moon from the earth. New time period of revolution of the moon is

1 $28 \sqrt{2}$ days
2 7 days
3 $14 \sqrt{2}$ days
4 14 days
Gravitation

138649 A number of planets are revolving around the Sun. Time period is ' $T$ ' and average orbital radius of a planet is ' $R$ '. A graph is drawn between $\log T$ on the $\mathrm{Y}$-axis and $\log \mathrm{R}$ on the $\mathrm{X}$-axis with the origin at $(0,0)$. The graph is a

1 Straight line with slope $\frac{3}{2}$ and passing through origin
2 Straight line with slope $\frac{3}{2}$ and not passing through origin
3 Parabola
4 Ellipse
Gravitation

138644 The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes $3 R$ will be:

1 $\sqrt{3}$ years
2 3 years
3 8 years
4 $3 \sqrt{3}$ years
Gravitation

138646 A satellite is to be placed in equatorial geostationary orbit around the Earth for communication purpose. The height of such satellite is
$\left(M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6400 \mathrm{~km}\right)$

1 $3.57 \times 10^{8} \mathrm{~m}$
2 $3.57 \times 10^{7} \mathrm{~m}$
3 $3.57 \times 10^{5} \mathrm{~m}$
4 $3.57 \times 10^{6} \mathrm{~m}$
Gravitation

138647 A planet is revolving round the sun of mass ' $M$ ' in an elliptical orbit with semi-major axis ' $a$ '. The speed of the planer when it is a distance ' $r$ ' from the sun is. (G - Universal gravitational constant)

1 $\sqrt{\mathrm{GM}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
2 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
3 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{2}{\mathrm{a}}\right]}$
4 $\sqrt{\frac{\mathrm{GMr}}{2 \mathrm{a}}}$
Gravitation

138648 The time period of moon around the earth is 28 days. If the mass of the earth is doubled, without any change in the distance of the moon from the earth. New time period of revolution of the moon is

1 $28 \sqrt{2}$ days
2 7 days
3 $14 \sqrt{2}$ days
4 14 days
Gravitation

138649 A number of planets are revolving around the Sun. Time period is ' $T$ ' and average orbital radius of a planet is ' $R$ '. A graph is drawn between $\log T$ on the $\mathrm{Y}$-axis and $\log \mathrm{R}$ on the $\mathrm{X}$-axis with the origin at $(0,0)$. The graph is a

1 Straight line with slope $\frac{3}{2}$ and passing through origin
2 Straight line with slope $\frac{3}{2}$ and not passing through origin
3 Parabola
4 Ellipse
Gravitation

138644 The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes $3 R$ will be:

1 $\sqrt{3}$ years
2 3 years
3 8 years
4 $3 \sqrt{3}$ years
Gravitation

138646 A satellite is to be placed in equatorial geostationary orbit around the Earth for communication purpose. The height of such satellite is
$\left(M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6400 \mathrm{~km}\right)$

1 $3.57 \times 10^{8} \mathrm{~m}$
2 $3.57 \times 10^{7} \mathrm{~m}$
3 $3.57 \times 10^{5} \mathrm{~m}$
4 $3.57 \times 10^{6} \mathrm{~m}$
Gravitation

138647 A planet is revolving round the sun of mass ' $M$ ' in an elliptical orbit with semi-major axis ' $a$ '. The speed of the planer when it is a distance ' $r$ ' from the sun is. (G - Universal gravitational constant)

1 $\sqrt{\mathrm{GM}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
2 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]}$
3 $\sqrt{\mathrm{GM}\left[\frac{1}{\mathrm{r}}-\frac{2}{\mathrm{a}}\right]}$
4 $\sqrt{\frac{\mathrm{GMr}}{2 \mathrm{a}}}$
Gravitation

138648 The time period of moon around the earth is 28 days. If the mass of the earth is doubled, without any change in the distance of the moon from the earth. New time period of revolution of the moon is

1 $28 \sqrt{2}$ days
2 7 days
3 $14 \sqrt{2}$ days
4 14 days
Gravitation

138649 A number of planets are revolving around the Sun. Time period is ' $T$ ' and average orbital radius of a planet is ' $R$ '. A graph is drawn between $\log T$ on the $\mathrm{Y}$-axis and $\log \mathrm{R}$ on the $\mathrm{X}$-axis with the origin at $(0,0)$. The graph is a

1 Straight line with slope $\frac{3}{2}$ and passing through origin
2 Straight line with slope $\frac{3}{2}$ and not passing through origin
3 Parabola
4 Ellipse