06. Rolling Motion
Rotational Motion

150391 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 v^{2}}{4 g}\) with respect to the initial position. The object is

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150392 The moment of inertia of two freely rotating bodies \(A\) and \(B\) are \(I_{A}\) and \(I_{B}\), respectively. \(I_{A}>I_{B}\) and their angular moment are equal. If \(K_{A}\) and \(K_{B}\) are their kinetic energies, then

1 \(\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\)
2 \(\mathrm{K}_{\mathrm{A}} \neq \mathrm{K}_{\mathrm{B}}\)
3 \(\mathrm{K}_{\mathrm{A}} \lt \mathrm{K}_{\mathrm{B}}\)
4 \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\)
Rotational Motion

150393 A disc of moment of inertia \(\frac{9.8}{\pi^{2}} \mathrm{~kg}-\mathrm{m}^{2}\) is rotating at \(600 \mathrm{rpm}\). If the frequency of rotation changes from \(600 \mathrm{rpm}\) to \(300 \mathrm{rpm}\), then what is the work done ?

1 \(1467 \mathrm{~J}\)
2 \(1452 \mathrm{~J}\)
3 \(1567 \mathrm{~J}\)
4 \(1632 \mathrm{~J}\)
Rotational Motion

150394 A solid sphere of mass \(M\) and radius \(2 R\) rolls down an inclined plane of height \(h\) without slipping. The speed of its centre of mass when it reaches the bottom is

1 \(\sqrt{\frac{6}{7} \mathrm{gh}}\)
2 \(\sqrt{3 \mathrm{gh}}\)
3 \(\sqrt{\frac{10}{7} \mathrm{gh}}\)
4 \(\sqrt{\frac{4}{3} \mathrm{gh}}\)
Rotational Motion

150395 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}\) with respect to the initial position. The object is:
original image

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150391 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 v^{2}}{4 g}\) with respect to the initial position. The object is

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150392 The moment of inertia of two freely rotating bodies \(A\) and \(B\) are \(I_{A}\) and \(I_{B}\), respectively. \(I_{A}>I_{B}\) and their angular moment are equal. If \(K_{A}\) and \(K_{B}\) are their kinetic energies, then

1 \(\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\)
2 \(\mathrm{K}_{\mathrm{A}} \neq \mathrm{K}_{\mathrm{B}}\)
3 \(\mathrm{K}_{\mathrm{A}} \lt \mathrm{K}_{\mathrm{B}}\)
4 \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\)
Rotational Motion

150393 A disc of moment of inertia \(\frac{9.8}{\pi^{2}} \mathrm{~kg}-\mathrm{m}^{2}\) is rotating at \(600 \mathrm{rpm}\). If the frequency of rotation changes from \(600 \mathrm{rpm}\) to \(300 \mathrm{rpm}\), then what is the work done ?

1 \(1467 \mathrm{~J}\)
2 \(1452 \mathrm{~J}\)
3 \(1567 \mathrm{~J}\)
4 \(1632 \mathrm{~J}\)
Rotational Motion

150394 A solid sphere of mass \(M\) and radius \(2 R\) rolls down an inclined plane of height \(h\) without slipping. The speed of its centre of mass when it reaches the bottom is

1 \(\sqrt{\frac{6}{7} \mathrm{gh}}\)
2 \(\sqrt{3 \mathrm{gh}}\)
3 \(\sqrt{\frac{10}{7} \mathrm{gh}}\)
4 \(\sqrt{\frac{4}{3} \mathrm{gh}}\)
Rotational Motion

150395 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}\) with respect to the initial position. The object is:
original image

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150391 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 v^{2}}{4 g}\) with respect to the initial position. The object is

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150392 The moment of inertia of two freely rotating bodies \(A\) and \(B\) are \(I_{A}\) and \(I_{B}\), respectively. \(I_{A}>I_{B}\) and their angular moment are equal. If \(K_{A}\) and \(K_{B}\) are their kinetic energies, then

1 \(\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\)
2 \(\mathrm{K}_{\mathrm{A}} \neq \mathrm{K}_{\mathrm{B}}\)
3 \(\mathrm{K}_{\mathrm{A}} \lt \mathrm{K}_{\mathrm{B}}\)
4 \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\)
Rotational Motion

150393 A disc of moment of inertia \(\frac{9.8}{\pi^{2}} \mathrm{~kg}-\mathrm{m}^{2}\) is rotating at \(600 \mathrm{rpm}\). If the frequency of rotation changes from \(600 \mathrm{rpm}\) to \(300 \mathrm{rpm}\), then what is the work done ?

1 \(1467 \mathrm{~J}\)
2 \(1452 \mathrm{~J}\)
3 \(1567 \mathrm{~J}\)
4 \(1632 \mathrm{~J}\)
Rotational Motion

150394 A solid sphere of mass \(M\) and radius \(2 R\) rolls down an inclined plane of height \(h\) without slipping. The speed of its centre of mass when it reaches the bottom is

1 \(\sqrt{\frac{6}{7} \mathrm{gh}}\)
2 \(\sqrt{3 \mathrm{gh}}\)
3 \(\sqrt{\frac{10}{7} \mathrm{gh}}\)
4 \(\sqrt{\frac{4}{3} \mathrm{gh}}\)
Rotational Motion

150395 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}\) with respect to the initial position. The object is:
original image

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150391 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 v^{2}}{4 g}\) with respect to the initial position. The object is

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150392 The moment of inertia of two freely rotating bodies \(A\) and \(B\) are \(I_{A}\) and \(I_{B}\), respectively. \(I_{A}>I_{B}\) and their angular moment are equal. If \(K_{A}\) and \(K_{B}\) are their kinetic energies, then

1 \(\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\)
2 \(\mathrm{K}_{\mathrm{A}} \neq \mathrm{K}_{\mathrm{B}}\)
3 \(\mathrm{K}_{\mathrm{A}} \lt \mathrm{K}_{\mathrm{B}}\)
4 \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\)
Rotational Motion

150393 A disc of moment of inertia \(\frac{9.8}{\pi^{2}} \mathrm{~kg}-\mathrm{m}^{2}\) is rotating at \(600 \mathrm{rpm}\). If the frequency of rotation changes from \(600 \mathrm{rpm}\) to \(300 \mathrm{rpm}\), then what is the work done ?

1 \(1467 \mathrm{~J}\)
2 \(1452 \mathrm{~J}\)
3 \(1567 \mathrm{~J}\)
4 \(1632 \mathrm{~J}\)
Rotational Motion

150394 A solid sphere of mass \(M\) and radius \(2 R\) rolls down an inclined plane of height \(h\) without slipping. The speed of its centre of mass when it reaches the bottom is

1 \(\sqrt{\frac{6}{7} \mathrm{gh}}\)
2 \(\sqrt{3 \mathrm{gh}}\)
3 \(\sqrt{\frac{10}{7} \mathrm{gh}}\)
4 \(\sqrt{\frac{4}{3} \mathrm{gh}}\)
Rotational Motion

150395 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}\) with respect to the initial position. The object is:
original image

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150391 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 v^{2}}{4 g}\) with respect to the initial position. The object is

1 ring
2 solid sphere
3 hollow sphere
4 disc
Rotational Motion

150392 The moment of inertia of two freely rotating bodies \(A\) and \(B\) are \(I_{A}\) and \(I_{B}\), respectively. \(I_{A}>I_{B}\) and their angular moment are equal. If \(K_{A}\) and \(K_{B}\) are their kinetic energies, then

1 \(\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\)
2 \(\mathrm{K}_{\mathrm{A}} \neq \mathrm{K}_{\mathrm{B}}\)
3 \(\mathrm{K}_{\mathrm{A}} \lt \mathrm{K}_{\mathrm{B}}\)
4 \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\)
Rotational Motion

150393 A disc of moment of inertia \(\frac{9.8}{\pi^{2}} \mathrm{~kg}-\mathrm{m}^{2}\) is rotating at \(600 \mathrm{rpm}\). If the frequency of rotation changes from \(600 \mathrm{rpm}\) to \(300 \mathrm{rpm}\), then what is the work done ?

1 \(1467 \mathrm{~J}\)
2 \(1452 \mathrm{~J}\)
3 \(1567 \mathrm{~J}\)
4 \(1632 \mathrm{~J}\)
Rotational Motion

150394 A solid sphere of mass \(M\) and radius \(2 R\) rolls down an inclined plane of height \(h\) without slipping. The speed of its centre of mass when it reaches the bottom is

1 \(\sqrt{\frac{6}{7} \mathrm{gh}}\)
2 \(\sqrt{3 \mathrm{gh}}\)
3 \(\sqrt{\frac{10}{7} \mathrm{gh}}\)
4 \(\sqrt{\frac{4}{3} \mathrm{gh}}\)
Rotational Motion

150395 A small object of uniform density rolls up a curved surface with an initial velocity \(v\). It reaches up to a maximum height of \(\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}\) with respect to the initial position. The object is:
original image

1 ring
2 solid sphere
3 hollow sphere
4 disc