02. Torque, Angular Momentum
Rotational Motion

149980 A rope is wound around a hollow cylinder of mass \(3 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). What is the angular acceleration of the cylinder, if the rope is pulled with a force of \(30 \mathrm{~N}\) ?

1 \(25 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(0.25 \mathrm{rad} / \mathrm{s}^{2}\)
3 \(25 \mathrm{rad} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Rotational Motion

149981 A girl with mass ' \(m\) ' is standing at the edge of a merry-go-round having moment of inertia ' \(I\) ', radius ' \(R\) ' and angular velocity ' \(\omega\) ' as shown in figure. The girl jumps off the edge of the merry-go-round with a velocity ' \(v\) ' with respect to the ground in a direction tangent to the edge. The new angular velocity of the merry-goround is

1 \(\left[\frac{I \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
2 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
3 \(\left[\frac{\mathrm{I} \omega-\mathrm{mvR}}{\mathrm{I}}\right]\)
4 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v R}{I}\right]\)
Rotational Motion

149982 A circular disc is rotating with angular velocity \(\omega\). A man standing at the edge walks towards the centre of the disc then the angular velocity is \(\omega\).

1 Decreases
2 Increases
3 No change
4 Halved
Rotational Motion

149983 Three small balls of masses \(1 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) are moving in a plane and their velocities are \(1 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}\) and \(3 \mathrm{~m} / \mathrm{s}\), respectively as shown. The total angular momentum of the system of three ball about point \(P\) at given instant of time is

1 \(8 \mathrm{kgm}^{2} / \mathrm{s}\)
2 \(9 \mathrm{kgm}^{2} / \mathrm{s}\)
3 \(36 \mathrm{kgm}^{2} / \mathrm{s}\)
4 \(7 \mathrm{kgm}^{2} / \mathrm{s}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149980 A rope is wound around a hollow cylinder of mass \(3 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). What is the angular acceleration of the cylinder, if the rope is pulled with a force of \(30 \mathrm{~N}\) ?

1 \(25 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(0.25 \mathrm{rad} / \mathrm{s}^{2}\)
3 \(25 \mathrm{rad} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Rotational Motion

149981 A girl with mass ' \(m\) ' is standing at the edge of a merry-go-round having moment of inertia ' \(I\) ', radius ' \(R\) ' and angular velocity ' \(\omega\) ' as shown in figure. The girl jumps off the edge of the merry-go-round with a velocity ' \(v\) ' with respect to the ground in a direction tangent to the edge. The new angular velocity of the merry-goround is

1 \(\left[\frac{I \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
2 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
3 \(\left[\frac{\mathrm{I} \omega-\mathrm{mvR}}{\mathrm{I}}\right]\)
4 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v R}{I}\right]\)
Rotational Motion

149982 A circular disc is rotating with angular velocity \(\omega\). A man standing at the edge walks towards the centre of the disc then the angular velocity is \(\omega\).

1 Decreases
2 Increases
3 No change
4 Halved
Rotational Motion

149983 Three small balls of masses \(1 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) are moving in a plane and their velocities are \(1 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}\) and \(3 \mathrm{~m} / \mathrm{s}\), respectively as shown. The total angular momentum of the system of three ball about point \(P\) at given instant of time is

1 \(8 \mathrm{kgm}^{2} / \mathrm{s}\)
2 \(9 \mathrm{kgm}^{2} / \mathrm{s}\)
3 \(36 \mathrm{kgm}^{2} / \mathrm{s}\)
4 \(7 \mathrm{kgm}^{2} / \mathrm{s}\)
Rotational Motion

149980 A rope is wound around a hollow cylinder of mass \(3 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). What is the angular acceleration of the cylinder, if the rope is pulled with a force of \(30 \mathrm{~N}\) ?

1 \(25 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(0.25 \mathrm{rad} / \mathrm{s}^{2}\)
3 \(25 \mathrm{rad} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Rotational Motion

149981 A girl with mass ' \(m\) ' is standing at the edge of a merry-go-round having moment of inertia ' \(I\) ', radius ' \(R\) ' and angular velocity ' \(\omega\) ' as shown in figure. The girl jumps off the edge of the merry-go-round with a velocity ' \(v\) ' with respect to the ground in a direction tangent to the edge. The new angular velocity of the merry-goround is

1 \(\left[\frac{I \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
2 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
3 \(\left[\frac{\mathrm{I} \omega-\mathrm{mvR}}{\mathrm{I}}\right]\)
4 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v R}{I}\right]\)
Rotational Motion

149982 A circular disc is rotating with angular velocity \(\omega\). A man standing at the edge walks towards the centre of the disc then the angular velocity is \(\omega\).

1 Decreases
2 Increases
3 No change
4 Halved
Rotational Motion

149983 Three small balls of masses \(1 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) are moving in a plane and their velocities are \(1 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}\) and \(3 \mathrm{~m} / \mathrm{s}\), respectively as shown. The total angular momentum of the system of three ball about point \(P\) at given instant of time is

1 \(8 \mathrm{kgm}^{2} / \mathrm{s}\)
2 \(9 \mathrm{kgm}^{2} / \mathrm{s}\)
3 \(36 \mathrm{kgm}^{2} / \mathrm{s}\)
4 \(7 \mathrm{kgm}^{2} / \mathrm{s}\)
Rotational Motion

149980 A rope is wound around a hollow cylinder of mass \(3 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). What is the angular acceleration of the cylinder, if the rope is pulled with a force of \(30 \mathrm{~N}\) ?

1 \(25 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(0.25 \mathrm{rad} / \mathrm{s}^{2}\)
3 \(25 \mathrm{rad} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Rotational Motion

149981 A girl with mass ' \(m\) ' is standing at the edge of a merry-go-round having moment of inertia ' \(I\) ', radius ' \(R\) ' and angular velocity ' \(\omega\) ' as shown in figure. The girl jumps off the edge of the merry-go-round with a velocity ' \(v\) ' with respect to the ground in a direction tangent to the edge. The new angular velocity of the merry-goround is

1 \(\left[\frac{I \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
2 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v^{2}}{I}\right]^{\frac{1}{2}}\)
3 \(\left[\frac{\mathrm{I} \omega-\mathrm{mvR}}{\mathrm{I}}\right]\)
4 \(\left[\frac{\left(I+m R^{2}\right) \omega-m v R}{I}\right]\)
Rotational Motion

149982 A circular disc is rotating with angular velocity \(\omega\). A man standing at the edge walks towards the centre of the disc then the angular velocity is \(\omega\).

1 Decreases
2 Increases
3 No change
4 Halved
Rotational Motion

149983 Three small balls of masses \(1 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) are moving in a plane and their velocities are \(1 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}\) and \(3 \mathrm{~m} / \mathrm{s}\), respectively as shown. The total angular momentum of the system of three ball about point \(P\) at given instant of time is

1 \(8 \mathrm{kgm}^{2} / \mathrm{s}\)
2 \(9 \mathrm{kgm}^{2} / \mathrm{s}\)
3 \(36 \mathrm{kgm}^{2} / \mathrm{s}\)
4 \(7 \mathrm{kgm}^{2} / \mathrm{s}\)