01. Angular Displacement, Velocity and Acceleration
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149851 If the equation for the displacement of particle moving on a circular path is given as \(\theta=2 t^{3}+\) 0.5,
Where \(\theta\) is in radians and \(t\) is in second. Then the angular velocity of the particle after two second will be:

1 \(36 \mathrm{rad} / \mathrm{sec}\)
2 \(8 \mathrm{rad} / \mathrm{sec}\)
3 \(48 \mathrm{rad} / \mathrm{sec}\)
4 \(24 \mathrm{rad} / \mathrm{sec}\)
Rotational Motion

149852 A particle moves through angular displacement \(\theta\) on a circular path of radius \(r\). The linear displacement will be-

1 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
2 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \cot \left(\frac{\theta}{2}\right)\)
Rotational Motion

149853 Shaft of a motor rotates at a constant angular velocity of \(3000 \mathrm{rpm}\). The radians it has turned through in \(1 \mathrm{~s}\) is-

1 \(\pi\)
2 \(10 \pi\)
3 \(50 \pi\)
4 \(100 \pi\)
Rotational Motion

149854 A weightless thread can bear tension up to 3.7 \(\mathrm{kg}\) wt. A stone of mass \(500 \mathrm{~g}\) is tied to it and revolved in a circular path of radius \(4 \mathrm{~m}\) in a vertical plane. If \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the maximum angular velocity of the stone will be-

1 \(2 \mathrm{rad} / \mathrm{s}\)
2 \(4 \mathrm{rad} / \mathrm{s}\)
3 \(16 \mathrm{rad} / \mathrm{s}\)
4 \(\sqrt{21} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149851 If the equation for the displacement of particle moving on a circular path is given as \(\theta=2 t^{3}+\) 0.5,
Where \(\theta\) is in radians and \(t\) is in second. Then the angular velocity of the particle after two second will be:

1 \(36 \mathrm{rad} / \mathrm{sec}\)
2 \(8 \mathrm{rad} / \mathrm{sec}\)
3 \(48 \mathrm{rad} / \mathrm{sec}\)
4 \(24 \mathrm{rad} / \mathrm{sec}\)
Rotational Motion

149852 A particle moves through angular displacement \(\theta\) on a circular path of radius \(r\). The linear displacement will be-

1 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
2 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \cot \left(\frac{\theta}{2}\right)\)
Rotational Motion

149853 Shaft of a motor rotates at a constant angular velocity of \(3000 \mathrm{rpm}\). The radians it has turned through in \(1 \mathrm{~s}\) is-

1 \(\pi\)
2 \(10 \pi\)
3 \(50 \pi\)
4 \(100 \pi\)
Rotational Motion

149854 A weightless thread can bear tension up to 3.7 \(\mathrm{kg}\) wt. A stone of mass \(500 \mathrm{~g}\) is tied to it and revolved in a circular path of radius \(4 \mathrm{~m}\) in a vertical plane. If \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the maximum angular velocity of the stone will be-

1 \(2 \mathrm{rad} / \mathrm{s}\)
2 \(4 \mathrm{rad} / \mathrm{s}\)
3 \(16 \mathrm{rad} / \mathrm{s}\)
4 \(\sqrt{21} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149851 If the equation for the displacement of particle moving on a circular path is given as \(\theta=2 t^{3}+\) 0.5,
Where \(\theta\) is in radians and \(t\) is in second. Then the angular velocity of the particle after two second will be:

1 \(36 \mathrm{rad} / \mathrm{sec}\)
2 \(8 \mathrm{rad} / \mathrm{sec}\)
3 \(48 \mathrm{rad} / \mathrm{sec}\)
4 \(24 \mathrm{rad} / \mathrm{sec}\)
Rotational Motion

149852 A particle moves through angular displacement \(\theta\) on a circular path of radius \(r\). The linear displacement will be-

1 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
2 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \cot \left(\frac{\theta}{2}\right)\)
Rotational Motion

149853 Shaft of a motor rotates at a constant angular velocity of \(3000 \mathrm{rpm}\). The radians it has turned through in \(1 \mathrm{~s}\) is-

1 \(\pi\)
2 \(10 \pi\)
3 \(50 \pi\)
4 \(100 \pi\)
Rotational Motion

149854 A weightless thread can bear tension up to 3.7 \(\mathrm{kg}\) wt. A stone of mass \(500 \mathrm{~g}\) is tied to it and revolved in a circular path of radius \(4 \mathrm{~m}\) in a vertical plane. If \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the maximum angular velocity of the stone will be-

1 \(2 \mathrm{rad} / \mathrm{s}\)
2 \(4 \mathrm{rad} / \mathrm{s}\)
3 \(16 \mathrm{rad} / \mathrm{s}\)
4 \(\sqrt{21} \mathrm{rad} / \mathrm{s}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149851 If the equation for the displacement of particle moving on a circular path is given as \(\theta=2 t^{3}+\) 0.5,
Where \(\theta\) is in radians and \(t\) is in second. Then the angular velocity of the particle after two second will be:

1 \(36 \mathrm{rad} / \mathrm{sec}\)
2 \(8 \mathrm{rad} / \mathrm{sec}\)
3 \(48 \mathrm{rad} / \mathrm{sec}\)
4 \(24 \mathrm{rad} / \mathrm{sec}\)
Rotational Motion

149852 A particle moves through angular displacement \(\theta\) on a circular path of radius \(r\). The linear displacement will be-

1 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
2 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \cot \left(\frac{\theta}{2}\right)\)
Rotational Motion

149853 Shaft of a motor rotates at a constant angular velocity of \(3000 \mathrm{rpm}\). The radians it has turned through in \(1 \mathrm{~s}\) is-

1 \(\pi\)
2 \(10 \pi\)
3 \(50 \pi\)
4 \(100 \pi\)
Rotational Motion

149854 A weightless thread can bear tension up to 3.7 \(\mathrm{kg}\) wt. A stone of mass \(500 \mathrm{~g}\) is tied to it and revolved in a circular path of radius \(4 \mathrm{~m}\) in a vertical plane. If \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the maximum angular velocity of the stone will be-

1 \(2 \mathrm{rad} / \mathrm{s}\)
2 \(4 \mathrm{rad} / \mathrm{s}\)
3 \(16 \mathrm{rad} / \mathrm{s}\)
4 \(\sqrt{21} \mathrm{rad} / \mathrm{s}\)