02. Conservation of Energy and Work Energy Theorem
Work, Energy and Power

149116 A ball of mass $m$ is thrown upwards with a velocity $v$. If air exerts an average resisting force $F$, the velocity with which the ball returns to thrower is

1 $v \sqrt{\frac{m g}{m g+F}}$
2 $v \sqrt{\frac{F}{m g+F}}$
3 $v \sqrt{\frac{m g+F}{m g}}$
4 $v \sqrt{\frac{m g-F}{m g+F}}$
Work, Energy and Power

149117 A uniform chain of mass $m$ and length $l$ is on a smooth horizontal table with $\left(\frac{1}{n}\right)^{\text {th }}$ part of its length is hanging from one end of the table. The velocity of the chain, when it completely slips off the table is

1 $\sqrt{g l\left(1-\frac{1}{n^{2}}\right)}$
2 $\sqrt{2 g l\left(1+\frac{1}{n^{2}}\right)}$
3 $\sqrt{2 g l\left(1-\frac{1}{n^{2}}\right)}$
4 $\sqrt{2 g l}$
Work, Energy and Power

149118 The front solid cylinder has mass $\frac{M}{3}$ while the back one solid cylinder has mass $\frac{2 M}{3}$. The centre's of these cylinders are connected by massless rod as shown. Both the cylinders have same radii $R$. The system is released from rest on the inclined plane. The cylinders roll down. The speed of the rod after system descending a vertical distance $h$ is

1 $\sqrt{\frac{2 g h}{3}}$
2 $\sqrt{2 \mathrm{gh}}$
3 $\sqrt{\frac{4 \mathrm{gh}}{3}}$
4 $\sqrt{\frac{3 g h}{7}}$
Work, Energy and Power

149119 Suppose a particle of mass $m$ moving with potential energy $U=\frac{k x^{2}}{2}+A e^{-\alpha x^{2}}$ has velocity $v_{a}$ when its position is $x=a$. Here, $k, A$ and $\alpha$ are constants. The particle will be able to pass the origin, if

1 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\mathrm{ax}}\right)}$
2 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
3 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\mathrm{ax}^{2}}\right)}$
4 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
Work, Energy and Power

149116 A ball of mass $m$ is thrown upwards with a velocity $v$. If air exerts an average resisting force $F$, the velocity with which the ball returns to thrower is

1 $v \sqrt{\frac{m g}{m g+F}}$
2 $v \sqrt{\frac{F}{m g+F}}$
3 $v \sqrt{\frac{m g+F}{m g}}$
4 $v \sqrt{\frac{m g-F}{m g+F}}$
Work, Energy and Power

149117 A uniform chain of mass $m$ and length $l$ is on a smooth horizontal table with $\left(\frac{1}{n}\right)^{\text {th }}$ part of its length is hanging from one end of the table. The velocity of the chain, when it completely slips off the table is

1 $\sqrt{g l\left(1-\frac{1}{n^{2}}\right)}$
2 $\sqrt{2 g l\left(1+\frac{1}{n^{2}}\right)}$
3 $\sqrt{2 g l\left(1-\frac{1}{n^{2}}\right)}$
4 $\sqrt{2 g l}$
Work, Energy and Power

149118 The front solid cylinder has mass $\frac{M}{3}$ while the back one solid cylinder has mass $\frac{2 M}{3}$. The centre's of these cylinders are connected by massless rod as shown. Both the cylinders have same radii $R$. The system is released from rest on the inclined plane. The cylinders roll down. The speed of the rod after system descending a vertical distance $h$ is

1 $\sqrt{\frac{2 g h}{3}}$
2 $\sqrt{2 \mathrm{gh}}$
3 $\sqrt{\frac{4 \mathrm{gh}}{3}}$
4 $\sqrt{\frac{3 g h}{7}}$
Work, Energy and Power

149119 Suppose a particle of mass $m$ moving with potential energy $U=\frac{k x^{2}}{2}+A e^{-\alpha x^{2}}$ has velocity $v_{a}$ when its position is $x=a$. Here, $k, A$ and $\alpha$ are constants. The particle will be able to pass the origin, if

1 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\mathrm{ax}}\right)}$
2 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
3 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\mathrm{ax}^{2}}\right)}$
4 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
Work, Energy and Power

149116 A ball of mass $m$ is thrown upwards with a velocity $v$. If air exerts an average resisting force $F$, the velocity with which the ball returns to thrower is

1 $v \sqrt{\frac{m g}{m g+F}}$
2 $v \sqrt{\frac{F}{m g+F}}$
3 $v \sqrt{\frac{m g+F}{m g}}$
4 $v \sqrt{\frac{m g-F}{m g+F}}$
Work, Energy and Power

149117 A uniform chain of mass $m$ and length $l$ is on a smooth horizontal table with $\left(\frac{1}{n}\right)^{\text {th }}$ part of its length is hanging from one end of the table. The velocity of the chain, when it completely slips off the table is

1 $\sqrt{g l\left(1-\frac{1}{n^{2}}\right)}$
2 $\sqrt{2 g l\left(1+\frac{1}{n^{2}}\right)}$
3 $\sqrt{2 g l\left(1-\frac{1}{n^{2}}\right)}$
4 $\sqrt{2 g l}$
Work, Energy and Power

149118 The front solid cylinder has mass $\frac{M}{3}$ while the back one solid cylinder has mass $\frac{2 M}{3}$. The centre's of these cylinders are connected by massless rod as shown. Both the cylinders have same radii $R$. The system is released from rest on the inclined plane. The cylinders roll down. The speed of the rod after system descending a vertical distance $h$ is

1 $\sqrt{\frac{2 g h}{3}}$
2 $\sqrt{2 \mathrm{gh}}$
3 $\sqrt{\frac{4 \mathrm{gh}}{3}}$
4 $\sqrt{\frac{3 g h}{7}}$
Work, Energy and Power

149119 Suppose a particle of mass $m$ moving with potential energy $U=\frac{k x^{2}}{2}+A e^{-\alpha x^{2}}$ has velocity $v_{a}$ when its position is $x=a$. Here, $k, A$ and $\alpha$ are constants. The particle will be able to pass the origin, if

1 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\mathrm{ax}}\right)}$
2 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
3 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\mathrm{ax}^{2}}\right)}$
4 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

149116 A ball of mass $m$ is thrown upwards with a velocity $v$. If air exerts an average resisting force $F$, the velocity with which the ball returns to thrower is

1 $v \sqrt{\frac{m g}{m g+F}}$
2 $v \sqrt{\frac{F}{m g+F}}$
3 $v \sqrt{\frac{m g+F}{m g}}$
4 $v \sqrt{\frac{m g-F}{m g+F}}$
Work, Energy and Power

149117 A uniform chain of mass $m$ and length $l$ is on a smooth horizontal table with $\left(\frac{1}{n}\right)^{\text {th }}$ part of its length is hanging from one end of the table. The velocity of the chain, when it completely slips off the table is

1 $\sqrt{g l\left(1-\frac{1}{n^{2}}\right)}$
2 $\sqrt{2 g l\left(1+\frac{1}{n^{2}}\right)}$
3 $\sqrt{2 g l\left(1-\frac{1}{n^{2}}\right)}$
4 $\sqrt{2 g l}$
Work, Energy and Power

149118 The front solid cylinder has mass $\frac{M}{3}$ while the back one solid cylinder has mass $\frac{2 M}{3}$. The centre's of these cylinders are connected by massless rod as shown. Both the cylinders have same radii $R$. The system is released from rest on the inclined plane. The cylinders roll down. The speed of the rod after system descending a vertical distance $h$ is

1 $\sqrt{\frac{2 g h}{3}}$
2 $\sqrt{2 \mathrm{gh}}$
3 $\sqrt{\frac{4 \mathrm{gh}}{3}}$
4 $\sqrt{\frac{3 g h}{7}}$
Work, Energy and Power

149119 Suppose a particle of mass $m$ moving with potential energy $U=\frac{k x^{2}}{2}+A e^{-\alpha x^{2}}$ has velocity $v_{a}$ when its position is $x=a$. Here, $k, A$ and $\alpha$ are constants. The particle will be able to pass the origin, if

1 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\mathrm{ax}}\right)}$
2 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{2\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$
3 $\mathrm{A} \leq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\mathrm{ax}^{2}}\right)}$
4 $\mathrm{A} \geq \frac{\mathrm{mv}_{\mathrm{a}}^{2}+\mathrm{ka}^{2}}{\left(1-\mathrm{e}^{-\alpha \mathrm{a}^{2}}\right)}$