02. Conservation of Energy and Work Energy Theorem
Work, Energy and Power

149098 Power applied to a particle varies with time as $\left(P=3 t^{2}-2 t+1\right) W$, where $t$ is in second. The change in its kinetic energy between $t=2 s$ and $\mathrm{t}=\mathbf{4} \mathrm{s}$ is

1 $32 \mathrm{~J}$
2 $46 \mathrm{~J}$
3 $61 \mathrm{~J}$
4 $100 \mathrm{~J}$
Work, Energy and Power

149099 A solid cylinder of mass $m$ and $R$ rolls down plane of height $30 \mathrm{~m}$ without slipping. The speed of its centre of mass when the cylinder reaches the bottom is
$\text { [use } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { ] }$

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $40 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149100 A ball with $10^{3} \mathrm{~J}$ of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is $50 \mathrm{~cm}$, then the spring constant of the spring is

1 $2 \times 10^{3} \mathrm{Nm}^{-1}$
2 $6 \times 10^{3} \mathrm{Nm}^{-1}$
3 $8 \times 10^{3} \mathrm{Nm}^{-1}$
4 $5 \times 10^{3} \mathrm{Nm}^{-1}$
5 $3 \times 10^{3} \mathrm{Nm}^{-1}$
Work, Energy and Power

149101 An object released from certain height $h$ from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

1 $\frac{1}{4}$
2 $\frac{3}{4}$
3 $\frac{1}{2}$
4 $\frac{1}{8}$
5 $\frac{3}{8}$
Work, Energy and Power

149102 A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x \mathrm{~cm}$ into the sand, the average resistance offered by the sand to the body is

1 $\operatorname{Mg}\left(\frac{\mathrm{h}}{\mathrm{x}}\right)$
2 $\operatorname{Mg}\left(\frac{\mathrm{x}+\mathrm{h}}{\mathrm{x}}\right)$
3 $\operatorname{Mg}(\mathrm{h}+\mathrm{x})$
4 $\operatorname{Mg}\left(\frac{\mathrm{x}-\mathrm{h}}{\mathrm{x}}\right)$
Work, Energy and Power

149098 Power applied to a particle varies with time as $\left(P=3 t^{2}-2 t+1\right) W$, where $t$ is in second. The change in its kinetic energy between $t=2 s$ and $\mathrm{t}=\mathbf{4} \mathrm{s}$ is

1 $32 \mathrm{~J}$
2 $46 \mathrm{~J}$
3 $61 \mathrm{~J}$
4 $100 \mathrm{~J}$
Work, Energy and Power

149099 A solid cylinder of mass $m$ and $R$ rolls down plane of height $30 \mathrm{~m}$ without slipping. The speed of its centre of mass when the cylinder reaches the bottom is
$\text { [use } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { ] }$

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $40 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149100 A ball with $10^{3} \mathrm{~J}$ of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is $50 \mathrm{~cm}$, then the spring constant of the spring is

1 $2 \times 10^{3} \mathrm{Nm}^{-1}$
2 $6 \times 10^{3} \mathrm{Nm}^{-1}$
3 $8 \times 10^{3} \mathrm{Nm}^{-1}$
4 $5 \times 10^{3} \mathrm{Nm}^{-1}$
5 $3 \times 10^{3} \mathrm{Nm}^{-1}$
Work, Energy and Power

149101 An object released from certain height $h$ from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

1 $\frac{1}{4}$
2 $\frac{3}{4}$
3 $\frac{1}{2}$
4 $\frac{1}{8}$
5 $\frac{3}{8}$
Work, Energy and Power

149102 A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x \mathrm{~cm}$ into the sand, the average resistance offered by the sand to the body is

1 $\operatorname{Mg}\left(\frac{\mathrm{h}}{\mathrm{x}}\right)$
2 $\operatorname{Mg}\left(\frac{\mathrm{x}+\mathrm{h}}{\mathrm{x}}\right)$
3 $\operatorname{Mg}(\mathrm{h}+\mathrm{x})$
4 $\operatorname{Mg}\left(\frac{\mathrm{x}-\mathrm{h}}{\mathrm{x}}\right)$
Work, Energy and Power

149098 Power applied to a particle varies with time as $\left(P=3 t^{2}-2 t+1\right) W$, where $t$ is in second. The change in its kinetic energy between $t=2 s$ and $\mathrm{t}=\mathbf{4} \mathrm{s}$ is

1 $32 \mathrm{~J}$
2 $46 \mathrm{~J}$
3 $61 \mathrm{~J}$
4 $100 \mathrm{~J}$
Work, Energy and Power

149099 A solid cylinder of mass $m$ and $R$ rolls down plane of height $30 \mathrm{~m}$ without slipping. The speed of its centre of mass when the cylinder reaches the bottom is
$\text { [use } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { ] }$

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $40 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149100 A ball with $10^{3} \mathrm{~J}$ of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is $50 \mathrm{~cm}$, then the spring constant of the spring is

1 $2 \times 10^{3} \mathrm{Nm}^{-1}$
2 $6 \times 10^{3} \mathrm{Nm}^{-1}$
3 $8 \times 10^{3} \mathrm{Nm}^{-1}$
4 $5 \times 10^{3} \mathrm{Nm}^{-1}$
5 $3 \times 10^{3} \mathrm{Nm}^{-1}$
Work, Energy and Power

149101 An object released from certain height $h$ from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

1 $\frac{1}{4}$
2 $\frac{3}{4}$
3 $\frac{1}{2}$
4 $\frac{1}{8}$
5 $\frac{3}{8}$
Work, Energy and Power

149102 A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x \mathrm{~cm}$ into the sand, the average resistance offered by the sand to the body is

1 $\operatorname{Mg}\left(\frac{\mathrm{h}}{\mathrm{x}}\right)$
2 $\operatorname{Mg}\left(\frac{\mathrm{x}+\mathrm{h}}{\mathrm{x}}\right)$
3 $\operatorname{Mg}(\mathrm{h}+\mathrm{x})$
4 $\operatorname{Mg}\left(\frac{\mathrm{x}-\mathrm{h}}{\mathrm{x}}\right)$
Work, Energy and Power

149098 Power applied to a particle varies with time as $\left(P=3 t^{2}-2 t+1\right) W$, where $t$ is in second. The change in its kinetic energy between $t=2 s$ and $\mathrm{t}=\mathbf{4} \mathrm{s}$ is

1 $32 \mathrm{~J}$
2 $46 \mathrm{~J}$
3 $61 \mathrm{~J}$
4 $100 \mathrm{~J}$
Work, Energy and Power

149099 A solid cylinder of mass $m$ and $R$ rolls down plane of height $30 \mathrm{~m}$ without slipping. The speed of its centre of mass when the cylinder reaches the bottom is
$\text { [use } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { ] }$

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $40 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149100 A ball with $10^{3} \mathrm{~J}$ of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is $50 \mathrm{~cm}$, then the spring constant of the spring is

1 $2 \times 10^{3} \mathrm{Nm}^{-1}$
2 $6 \times 10^{3} \mathrm{Nm}^{-1}$
3 $8 \times 10^{3} \mathrm{Nm}^{-1}$
4 $5 \times 10^{3} \mathrm{Nm}^{-1}$
5 $3 \times 10^{3} \mathrm{Nm}^{-1}$
Work, Energy and Power

149101 An object released from certain height $h$ from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

1 $\frac{1}{4}$
2 $\frac{3}{4}$
3 $\frac{1}{2}$
4 $\frac{1}{8}$
5 $\frac{3}{8}$
Work, Energy and Power

149102 A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x \mathrm{~cm}$ into the sand, the average resistance offered by the sand to the body is

1 $\operatorname{Mg}\left(\frac{\mathrm{h}}{\mathrm{x}}\right)$
2 $\operatorname{Mg}\left(\frac{\mathrm{x}+\mathrm{h}}{\mathrm{x}}\right)$
3 $\operatorname{Mg}(\mathrm{h}+\mathrm{x})$
4 $\operatorname{Mg}\left(\frac{\mathrm{x}-\mathrm{h}}{\mathrm{x}}\right)$
Work, Energy and Power

149098 Power applied to a particle varies with time as $\left(P=3 t^{2}-2 t+1\right) W$, where $t$ is in second. The change in its kinetic energy between $t=2 s$ and $\mathrm{t}=\mathbf{4} \mathrm{s}$ is

1 $32 \mathrm{~J}$
2 $46 \mathrm{~J}$
3 $61 \mathrm{~J}$
4 $100 \mathrm{~J}$
Work, Energy and Power

149099 A solid cylinder of mass $m$ and $R$ rolls down plane of height $30 \mathrm{~m}$ without slipping. The speed of its centre of mass when the cylinder reaches the bottom is
$\text { [use } \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { ] }$

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $30 \mathrm{~m} / \mathrm{s}$
4 $40 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149100 A ball with $10^{3} \mathrm{~J}$ of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is $50 \mathrm{~cm}$, then the spring constant of the spring is

1 $2 \times 10^{3} \mathrm{Nm}^{-1}$
2 $6 \times 10^{3} \mathrm{Nm}^{-1}$
3 $8 \times 10^{3} \mathrm{Nm}^{-1}$
4 $5 \times 10^{3} \mathrm{Nm}^{-1}$
5 $3 \times 10^{3} \mathrm{Nm}^{-1}$
Work, Energy and Power

149101 An object released from certain height $h$ from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

1 $\frac{1}{4}$
2 $\frac{3}{4}$
3 $\frac{1}{2}$
4 $\frac{1}{8}$
5 $\frac{3}{8}$
Work, Energy and Power

149102 A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x \mathrm{~cm}$ into the sand, the average resistance offered by the sand to the body is

1 $\operatorname{Mg}\left(\frac{\mathrm{h}}{\mathrm{x}}\right)$
2 $\operatorname{Mg}\left(\frac{\mathrm{x}+\mathrm{h}}{\mathrm{x}}\right)$
3 $\operatorname{Mg}(\mathrm{h}+\mathrm{x})$
4 $\operatorname{Mg}\left(\frac{\mathrm{x}-\mathrm{h}}{\mathrm{x}}\right)$