01. Potential and Kinetic Energy
Work, Energy and Power

148997 A bullet of mass $50 \mathrm{~g}$ is fired from a riffle of mass $2 \mathrm{Kg}$ and the total kinetic energy produced by the explosion is $2050 \mathrm{~J}$. The kinetic energy of the bullet is

1 $50 \mathrm{~J}$
2 $2000 \mathrm{~J}$
3 $5020 \mathrm{~J}$
4 $585.7 \mathrm{~J}$
Work, Energy and Power

148999 The kinetic energy $K$ of a particle moving along a circle of radius $R$ depends on the distance covered $s$, as $K=a^{2}$, where, $a$ is a constant. Then the force acting on the particle is-

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Work, Energy and Power

149000 A small object of mass of $100 \mathrm{gm}$ moves in a circular path. At a given instant velocity of the object is $10 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}$ and acceleration is $(20 \hat{\mathbf{i}}+10 \hat{\mathbf{j}})$ $\mathrm{m} / \mathrm{s}^{2}$. At this instant of time, rate of change of kinetic energy of the object is

1 $200 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
2 $300 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
3 $10000 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
4 $20 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
Work, Energy and Power

149001 The potential energy of a conservative system is given by $V(x)=\left(x^{2}-3 x\right)$ joule, where $x$ is measured in metre. Then its equilibrium position is at

1 $1.5 \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $3 \mathrm{~m}$
4 $1 \mathrm{~m}$
5 $5 \mathrm{~m}$
Work, Energy and Power

148997 A bullet of mass $50 \mathrm{~g}$ is fired from a riffle of mass $2 \mathrm{Kg}$ and the total kinetic energy produced by the explosion is $2050 \mathrm{~J}$. The kinetic energy of the bullet is

1 $50 \mathrm{~J}$
2 $2000 \mathrm{~J}$
3 $5020 \mathrm{~J}$
4 $585.7 \mathrm{~J}$
Work, Energy and Power

148999 The kinetic energy $K$ of a particle moving along a circle of radius $R$ depends on the distance covered $s$, as $K=a^{2}$, where, $a$ is a constant. Then the force acting on the particle is-

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Work, Energy and Power

149000 A small object of mass of $100 \mathrm{gm}$ moves in a circular path. At a given instant velocity of the object is $10 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}$ and acceleration is $(20 \hat{\mathbf{i}}+10 \hat{\mathbf{j}})$ $\mathrm{m} / \mathrm{s}^{2}$. At this instant of time, rate of change of kinetic energy of the object is

1 $200 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
2 $300 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
3 $10000 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
4 $20 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
Work, Energy and Power

149001 The potential energy of a conservative system is given by $V(x)=\left(x^{2}-3 x\right)$ joule, where $x$ is measured in metre. Then its equilibrium position is at

1 $1.5 \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $3 \mathrm{~m}$
4 $1 \mathrm{~m}$
5 $5 \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148997 A bullet of mass $50 \mathrm{~g}$ is fired from a riffle of mass $2 \mathrm{Kg}$ and the total kinetic energy produced by the explosion is $2050 \mathrm{~J}$. The kinetic energy of the bullet is

1 $50 \mathrm{~J}$
2 $2000 \mathrm{~J}$
3 $5020 \mathrm{~J}$
4 $585.7 \mathrm{~J}$
Work, Energy and Power

148999 The kinetic energy $K$ of a particle moving along a circle of radius $R$ depends on the distance covered $s$, as $K=a^{2}$, where, $a$ is a constant. Then the force acting on the particle is-

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Work, Energy and Power

149000 A small object of mass of $100 \mathrm{gm}$ moves in a circular path. At a given instant velocity of the object is $10 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}$ and acceleration is $(20 \hat{\mathbf{i}}+10 \hat{\mathbf{j}})$ $\mathrm{m} / \mathrm{s}^{2}$. At this instant of time, rate of change of kinetic energy of the object is

1 $200 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
2 $300 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
3 $10000 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
4 $20 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
Work, Energy and Power

149001 The potential energy of a conservative system is given by $V(x)=\left(x^{2}-3 x\right)$ joule, where $x$ is measured in metre. Then its equilibrium position is at

1 $1.5 \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $3 \mathrm{~m}$
4 $1 \mathrm{~m}$
5 $5 \mathrm{~m}$
Work, Energy and Power

148997 A bullet of mass $50 \mathrm{~g}$ is fired from a riffle of mass $2 \mathrm{Kg}$ and the total kinetic energy produced by the explosion is $2050 \mathrm{~J}$. The kinetic energy of the bullet is

1 $50 \mathrm{~J}$
2 $2000 \mathrm{~J}$
3 $5020 \mathrm{~J}$
4 $585.7 \mathrm{~J}$
Work, Energy and Power

148999 The kinetic energy $K$ of a particle moving along a circle of radius $R$ depends on the distance covered $s$, as $K=a^{2}$, where, $a$ is a constant. Then the force acting on the particle is-

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Work, Energy and Power

149000 A small object of mass of $100 \mathrm{gm}$ moves in a circular path. At a given instant velocity of the object is $10 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}$ and acceleration is $(20 \hat{\mathbf{i}}+10 \hat{\mathbf{j}})$ $\mathrm{m} / \mathrm{s}^{2}$. At this instant of time, rate of change of kinetic energy of the object is

1 $200 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
2 $300 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
3 $10000 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
4 $20 \mathrm{kgm}^{2} / \mathrm{s}^{3}$
Work, Energy and Power

149001 The potential energy of a conservative system is given by $V(x)=\left(x^{2}-3 x\right)$ joule, where $x$ is measured in metre. Then its equilibrium position is at

1 $1.5 \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $3 \mathrm{~m}$
4 $1 \mathrm{~m}$
5 $5 \mathrm{~m}$