148719 The heart of a man pumps $5 \mathrm{~L}$ of blood through the arteries per minute at a pressure of $150 \mathrm{~mm}$ of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of heart in watt is
148720
The work done on the particle of mass $M$ by a force, is given as
$\mathbf{k}\left[\frac{\mathbf{x}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}+\frac{\mathbf{y}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{j}}\right]$
( $k$ being constant of appropriate dimensions). When the particle is taken from the point $(\mathrm{a}, 0)$ to the point $(0$, a) along a circular path of radius a about the origin in the $x-y$ plane is
148721 An elevator can carry a maximum load of 1000 $\mathrm{kg}$ is moving up with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. The frictional force opposing the motion is $2000 \mathrm{~N}$. The minimum power delivered by the motor to the elevator is: (Assuming g=10 m/ $/ \mathrm{s}^{2}$ )
148719 The heart of a man pumps $5 \mathrm{~L}$ of blood through the arteries per minute at a pressure of $150 \mathrm{~mm}$ of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of heart in watt is
148720
The work done on the particle of mass $M$ by a force, is given as
$\mathbf{k}\left[\frac{\mathbf{x}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}+\frac{\mathbf{y}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{j}}\right]$
( $k$ being constant of appropriate dimensions). When the particle is taken from the point $(\mathrm{a}, 0)$ to the point $(0$, a) along a circular path of radius a about the origin in the $x-y$ plane is
148721 An elevator can carry a maximum load of 1000 $\mathrm{kg}$ is moving up with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. The frictional force opposing the motion is $2000 \mathrm{~N}$. The minimum power delivered by the motor to the elevator is: (Assuming g=10 m/ $/ \mathrm{s}^{2}$ )
148719 The heart of a man pumps $5 \mathrm{~L}$ of blood through the arteries per minute at a pressure of $150 \mathrm{~mm}$ of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of heart in watt is
148720
The work done on the particle of mass $M$ by a force, is given as
$\mathbf{k}\left[\frac{\mathbf{x}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}+\frac{\mathbf{y}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{j}}\right]$
( $k$ being constant of appropriate dimensions). When the particle is taken from the point $(\mathrm{a}, 0)$ to the point $(0$, a) along a circular path of radius a about the origin in the $x-y$ plane is
148721 An elevator can carry a maximum load of 1000 $\mathrm{kg}$ is moving up with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. The frictional force opposing the motion is $2000 \mathrm{~N}$. The minimum power delivered by the motor to the elevator is: (Assuming g=10 m/ $/ \mathrm{s}^{2}$ )
148719 The heart of a man pumps $5 \mathrm{~L}$ of blood through the arteries per minute at a pressure of $150 \mathrm{~mm}$ of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of heart in watt is
148720
The work done on the particle of mass $M$ by a force, is given as
$\mathbf{k}\left[\frac{\mathbf{x}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}+\frac{\mathbf{y}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{j}}\right]$
( $k$ being constant of appropriate dimensions). When the particle is taken from the point $(\mathrm{a}, 0)$ to the point $(0$, a) along a circular path of radius a about the origin in the $x-y$ plane is
148721 An elevator can carry a maximum load of 1000 $\mathrm{kg}$ is moving up with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. The frictional force opposing the motion is $2000 \mathrm{~N}$. The minimum power delivered by the motor to the elevator is: (Assuming g=10 m/ $/ \mathrm{s}^{2}$ )
148719 The heart of a man pumps $5 \mathrm{~L}$ of blood through the arteries per minute at a pressure of $150 \mathrm{~mm}$ of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of heart in watt is
148720
The work done on the particle of mass $M$ by a force, is given as
$\mathbf{k}\left[\frac{\mathbf{x}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}+\frac{\mathbf{y}}{\left(\mathrm{x}^{2}+\mathbf{y}^{2}\right)^{3 / 2}} \hat{\mathbf{j}}\right]$
( $k$ being constant of appropriate dimensions). When the particle is taken from the point $(\mathrm{a}, 0)$ to the point $(0$, a) along a circular path of radius a about the origin in the $x-y$ plane is
148721 An elevator can carry a maximum load of 1000 $\mathrm{kg}$ is moving up with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. The frictional force opposing the motion is $2000 \mathrm{~N}$. The minimum power delivered by the motor to the elevator is: (Assuming g=10 m/ $/ \mathrm{s}^{2}$ )