00. Work done by Force and Power
Work, Energy and Power

148800 The efficiency of a heat engine is $1 / 6$. Its when the temperature of sink decreases by $62^{\circ} \mathrm{C}$, its efficiency doubles. Then what is the temperature of sources?

1 $470 \mathrm{~K}$
2 $372 \mathrm{~K}$
3 $542 \mathrm{~K}$
4 $1042 \mathrm{~K}$
Work, Energy and Power

148801 A Carnot engine absorbs $6 \times 10^{5}$ cal at $227^{\circ} \mathrm{C}$. The work done per cycle by the engine, if its sink is maintained at $127^{\circ} \mathrm{C}$ is

1 $15 \times 10^{8} \mathrm{~J}$
2 $15 \times 10^{4} \mathrm{~J}$
3 $5 \times 10^{5} \mathrm{~J}$
4 $2 \times 10^{4} \mathrm{~J}$
Work, Energy and Power

148802 When a rubber string is stretched through a distance ' $x$ ', the restoring force developed has a
magnitude $\left(p x+q x^2+r x^3\right)$ where $p, q$ and $r$
are constants. Work done in stretching the unstretched rubber string by a distance ' $l$ ' is

1 $\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}$
2 $\frac{1}{2}\left[\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}\right]$
3 $\mathrm{p} l^{2}+\mathrm{q} l^{3}+\mathrm{r} l^{4}$
4 $\mathrm{p} l+\mathrm{q} l+\mathrm{r} l^{3}$
Work, Energy and Power

148803 A body of mass $2 \mathrm{~kg}$ moving in $\mathrm{X}-\mathrm{Y}$ plane has a potential energy given by $U=(6 x+8 y) J$. The body is at rest at the point $(3,2) \mathrm{m}$. The work to be done by the body to reach another position after $2 \mathrm{~s}$ is

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $750 \mathrm{~J}$
4 $900 \mathrm{~J}$
Work, Energy and Power

148800 The efficiency of a heat engine is $1 / 6$. Its when the temperature of sink decreases by $62^{\circ} \mathrm{C}$, its efficiency doubles. Then what is the temperature of sources?

1 $470 \mathrm{~K}$
2 $372 \mathrm{~K}$
3 $542 \mathrm{~K}$
4 $1042 \mathrm{~K}$
Work, Energy and Power

148801 A Carnot engine absorbs $6 \times 10^{5}$ cal at $227^{\circ} \mathrm{C}$. The work done per cycle by the engine, if its sink is maintained at $127^{\circ} \mathrm{C}$ is

1 $15 \times 10^{8} \mathrm{~J}$
2 $15 \times 10^{4} \mathrm{~J}$
3 $5 \times 10^{5} \mathrm{~J}$
4 $2 \times 10^{4} \mathrm{~J}$
Work, Energy and Power

148802 When a rubber string is stretched through a distance ' $x$ ', the restoring force developed has a
magnitude $\left(p x+q x^2+r x^3\right)$ where $p, q$ and $r$
are constants. Work done in stretching the unstretched rubber string by a distance ' $l$ ' is

1 $\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}$
2 $\frac{1}{2}\left[\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}\right]$
3 $\mathrm{p} l^{2}+\mathrm{q} l^{3}+\mathrm{r} l^{4}$
4 $\mathrm{p} l+\mathrm{q} l+\mathrm{r} l^{3}$
Work, Energy and Power

148803 A body of mass $2 \mathrm{~kg}$ moving in $\mathrm{X}-\mathrm{Y}$ plane has a potential energy given by $U=(6 x+8 y) J$. The body is at rest at the point $(3,2) \mathrm{m}$. The work to be done by the body to reach another position after $2 \mathrm{~s}$ is

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $750 \mathrm{~J}$
4 $900 \mathrm{~J}$
Work, Energy and Power

148800 The efficiency of a heat engine is $1 / 6$. Its when the temperature of sink decreases by $62^{\circ} \mathrm{C}$, its efficiency doubles. Then what is the temperature of sources?

1 $470 \mathrm{~K}$
2 $372 \mathrm{~K}$
3 $542 \mathrm{~K}$
4 $1042 \mathrm{~K}$
Work, Energy and Power

148801 A Carnot engine absorbs $6 \times 10^{5}$ cal at $227^{\circ} \mathrm{C}$. The work done per cycle by the engine, if its sink is maintained at $127^{\circ} \mathrm{C}$ is

1 $15 \times 10^{8} \mathrm{~J}$
2 $15 \times 10^{4} \mathrm{~J}$
3 $5 \times 10^{5} \mathrm{~J}$
4 $2 \times 10^{4} \mathrm{~J}$
Work, Energy and Power

148802 When a rubber string is stretched through a distance ' $x$ ', the restoring force developed has a
magnitude $\left(p x+q x^2+r x^3\right)$ where $p, q$ and $r$
are constants. Work done in stretching the unstretched rubber string by a distance ' $l$ ' is

1 $\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}$
2 $\frac{1}{2}\left[\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}\right]$
3 $\mathrm{p} l^{2}+\mathrm{q} l^{3}+\mathrm{r} l^{4}$
4 $\mathrm{p} l+\mathrm{q} l+\mathrm{r} l^{3}$
Work, Energy and Power

148803 A body of mass $2 \mathrm{~kg}$ moving in $\mathrm{X}-\mathrm{Y}$ plane has a potential energy given by $U=(6 x+8 y) J$. The body is at rest at the point $(3,2) \mathrm{m}$. The work to be done by the body to reach another position after $2 \mathrm{~s}$ is

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $750 \mathrm{~J}$
4 $900 \mathrm{~J}$
Work, Energy and Power

148800 The efficiency of a heat engine is $1 / 6$. Its when the temperature of sink decreases by $62^{\circ} \mathrm{C}$, its efficiency doubles. Then what is the temperature of sources?

1 $470 \mathrm{~K}$
2 $372 \mathrm{~K}$
3 $542 \mathrm{~K}$
4 $1042 \mathrm{~K}$
Work, Energy and Power

148801 A Carnot engine absorbs $6 \times 10^{5}$ cal at $227^{\circ} \mathrm{C}$. The work done per cycle by the engine, if its sink is maintained at $127^{\circ} \mathrm{C}$ is

1 $15 \times 10^{8} \mathrm{~J}$
2 $15 \times 10^{4} \mathrm{~J}$
3 $5 \times 10^{5} \mathrm{~J}$
4 $2 \times 10^{4} \mathrm{~J}$
Work, Energy and Power

148802 When a rubber string is stretched through a distance ' $x$ ', the restoring force developed has a
magnitude $\left(p x+q x^2+r x^3\right)$ where $p, q$ and $r$
are constants. Work done in stretching the unstretched rubber string by a distance ' $l$ ' is

1 $\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}$
2 $\frac{1}{2}\left[\frac{\mathrm{p} l^{2}}{2}+\frac{\mathrm{q} l^{3}}{3}+\frac{\mathrm{r} l^{4}}{4}\right]$
3 $\mathrm{p} l^{2}+\mathrm{q} l^{3}+\mathrm{r} l^{4}$
4 $\mathrm{p} l+\mathrm{q} l+\mathrm{r} l^{3}$
Work, Energy and Power

148803 A body of mass $2 \mathrm{~kg}$ moving in $\mathrm{X}-\mathrm{Y}$ plane has a potential energy given by $U=(6 x+8 y) J$. The body is at rest at the point $(3,2) \mathrm{m}$. The work to be done by the body to reach another position after $2 \mathrm{~s}$ is

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $750 \mathrm{~J}$
4 $900 \mathrm{~J}$