05. System of Varying Mass
Laws of Motion

146350 A rocket with an initial mass \(m_{0}\) is going up with a constant acceleration a by exhausting gases with a velocity \(v\) relative to the rocket motion, then the mass of the rocket at any instant of time is (assume that no other forces act on it)

1 \(m=m_{0} e^{-\frac{a t}{v}}\)
2 \(m=m_{0} e^{-\frac{2 a t}{v}}\)
3 \(m=m_{0} e^{-\frac{a t}{2 v}}\)
4 \(m=m_{0} e^{-\frac{a^{2} t^{2}}{v^{2}}}\)
Laws of Motion

146352 A \(600 \mathrm{~kg}\) rocket is set for a vertical firing. If the exhaust speed is \(1000 \mathrm{~ms}^{-1}\), the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is

1 \(117.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
2 \(58.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
3 \(6 \mathrm{~kg} \mathrm{~s}^{-1}\)
4 \(76.4 \mathrm{~kg} \mathrm{~s}^{-1}\)
Laws of Motion

146353 If the force on a rocket moving with a velocity of \(300 \mathrm{~m} / \mathrm{s}\) is \(345 \mathrm{~N}\), then the rate of combustion of the fuel is

1 \(0.55 \mathrm{~kg} / \mathrm{s}\)
2 \(0.75 \mathrm{~kg} / \mathrm{s}\)
3 \(1.15 \mathrm{~kg} / \mathrm{s}\)
4 \(2.25 \mathrm{~kg} / \mathrm{s}\)
Laws of Motion

146354 A satellite in a force free space sweeps stationary interplanetary dust at a rate. \(\left(\frac{\mathbf{d M}}{\mathbf{d t}}\right)=\alpha \mathrm{v}\). The acceleration of satellite is

1 \(-\frac{2 \alpha v^{2}}{M}\)
2 \(-\frac{\alpha v^{2}}{M}\)
3 \(-\frac{\alpha v^{2}}{2 M}\)
4 \(-\alpha v^{2}\)
Laws of Motion

146350 A rocket with an initial mass \(m_{0}\) is going up with a constant acceleration a by exhausting gases with a velocity \(v\) relative to the rocket motion, then the mass of the rocket at any instant of time is (assume that no other forces act on it)

1 \(m=m_{0} e^{-\frac{a t}{v}}\)
2 \(m=m_{0} e^{-\frac{2 a t}{v}}\)
3 \(m=m_{0} e^{-\frac{a t}{2 v}}\)
4 \(m=m_{0} e^{-\frac{a^{2} t^{2}}{v^{2}}}\)
Laws of Motion

146352 A \(600 \mathrm{~kg}\) rocket is set for a vertical firing. If the exhaust speed is \(1000 \mathrm{~ms}^{-1}\), the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is

1 \(117.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
2 \(58.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
3 \(6 \mathrm{~kg} \mathrm{~s}^{-1}\)
4 \(76.4 \mathrm{~kg} \mathrm{~s}^{-1}\)
Laws of Motion

146353 If the force on a rocket moving with a velocity of \(300 \mathrm{~m} / \mathrm{s}\) is \(345 \mathrm{~N}\), then the rate of combustion of the fuel is

1 \(0.55 \mathrm{~kg} / \mathrm{s}\)
2 \(0.75 \mathrm{~kg} / \mathrm{s}\)
3 \(1.15 \mathrm{~kg} / \mathrm{s}\)
4 \(2.25 \mathrm{~kg} / \mathrm{s}\)
Laws of Motion

146354 A satellite in a force free space sweeps stationary interplanetary dust at a rate. \(\left(\frac{\mathbf{d M}}{\mathbf{d t}}\right)=\alpha \mathrm{v}\). The acceleration of satellite is

1 \(-\frac{2 \alpha v^{2}}{M}\)
2 \(-\frac{\alpha v^{2}}{M}\)
3 \(-\frac{\alpha v^{2}}{2 M}\)
4 \(-\alpha v^{2}\)
Laws of Motion

146350 A rocket with an initial mass \(m_{0}\) is going up with a constant acceleration a by exhausting gases with a velocity \(v\) relative to the rocket motion, then the mass of the rocket at any instant of time is (assume that no other forces act on it)

1 \(m=m_{0} e^{-\frac{a t}{v}}\)
2 \(m=m_{0} e^{-\frac{2 a t}{v}}\)
3 \(m=m_{0} e^{-\frac{a t}{2 v}}\)
4 \(m=m_{0} e^{-\frac{a^{2} t^{2}}{v^{2}}}\)
Laws of Motion

146352 A \(600 \mathrm{~kg}\) rocket is set for a vertical firing. If the exhaust speed is \(1000 \mathrm{~ms}^{-1}\), the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is

1 \(117.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
2 \(58.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
3 \(6 \mathrm{~kg} \mathrm{~s}^{-1}\)
4 \(76.4 \mathrm{~kg} \mathrm{~s}^{-1}\)
Laws of Motion

146353 If the force on a rocket moving with a velocity of \(300 \mathrm{~m} / \mathrm{s}\) is \(345 \mathrm{~N}\), then the rate of combustion of the fuel is

1 \(0.55 \mathrm{~kg} / \mathrm{s}\)
2 \(0.75 \mathrm{~kg} / \mathrm{s}\)
3 \(1.15 \mathrm{~kg} / \mathrm{s}\)
4 \(2.25 \mathrm{~kg} / \mathrm{s}\)
Laws of Motion

146354 A satellite in a force free space sweeps stationary interplanetary dust at a rate. \(\left(\frac{\mathbf{d M}}{\mathbf{d t}}\right)=\alpha \mathrm{v}\). The acceleration of satellite is

1 \(-\frac{2 \alpha v^{2}}{M}\)
2 \(-\frac{\alpha v^{2}}{M}\)
3 \(-\frac{\alpha v^{2}}{2 M}\)
4 \(-\alpha v^{2}\)
Laws of Motion

146350 A rocket with an initial mass \(m_{0}\) is going up with a constant acceleration a by exhausting gases with a velocity \(v\) relative to the rocket motion, then the mass of the rocket at any instant of time is (assume that no other forces act on it)

1 \(m=m_{0} e^{-\frac{a t}{v}}\)
2 \(m=m_{0} e^{-\frac{2 a t}{v}}\)
3 \(m=m_{0} e^{-\frac{a t}{2 v}}\)
4 \(m=m_{0} e^{-\frac{a^{2} t^{2}}{v^{2}}}\)
Laws of Motion

146352 A \(600 \mathrm{~kg}\) rocket is set for a vertical firing. If the exhaust speed is \(1000 \mathrm{~ms}^{-1}\), the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is

1 \(117.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
2 \(58.6 \mathrm{~kg} \mathrm{~s}^{-1}\)
3 \(6 \mathrm{~kg} \mathrm{~s}^{-1}\)
4 \(76.4 \mathrm{~kg} \mathrm{~s}^{-1}\)
Laws of Motion

146353 If the force on a rocket moving with a velocity of \(300 \mathrm{~m} / \mathrm{s}\) is \(345 \mathrm{~N}\), then the rate of combustion of the fuel is

1 \(0.55 \mathrm{~kg} / \mathrm{s}\)
2 \(0.75 \mathrm{~kg} / \mathrm{s}\)
3 \(1.15 \mathrm{~kg} / \mathrm{s}\)
4 \(2.25 \mathrm{~kg} / \mathrm{s}\)
Laws of Motion

146354 A satellite in a force free space sweeps stationary interplanetary dust at a rate. \(\left(\frac{\mathbf{d M}}{\mathbf{d t}}\right)=\alpha \mathrm{v}\). The acceleration of satellite is

1 \(-\frac{2 \alpha v^{2}}{M}\)
2 \(-\frac{\alpha v^{2}}{M}\)
3 \(-\frac{\alpha v^{2}}{2 M}\)
4 \(-\alpha v^{2}\)