00. Scalar and Vector Quantities
Motion in Plane

143524 If \(\vec{A}, \vec{B}\) are perpendicular vectors
\(\overrightarrow{\mathrm{A}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\mathbf{c} \hat{\mathbf{k}}\)
The value of \(c\) is

1 -2
2 8
3 -7
4 -8
Motion in Plane

143525 The resultant of the vectors \(A\) and \(B\) depends also on the angle \(\theta\) between them. The magnitude of the resultant is always given by

1 \(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta\)
2 \(\sqrt{(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta)}\)
3 \(\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\right)\)
Motion in Plane

143526 \(\quad \overrightarrow{\mathbf{A}}\) and \(\overrightarrow{\mathbf{B}}\) are vectors such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\) \(|\vec{A}-\vec{B}|\). Then, the angle between them is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143527 When two vectors \(\vec{A}\) and \(\vec{B}\) of magnitude a and \(b\) are added, the magnitude of the resultant vector is always

1 equal to \((a+b)\)
2 less than \((a+b)\)
3 greater than \((\mathrm{a}+\mathrm{b})\)
4 not greater than \((\mathrm{a}+\mathrm{b})\)
Motion in Plane

143529 The angle made by the vector \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) with \(\mathbf{x}\) axis is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(22.5^{\circ}\)
4 \(30^{\circ}\)
Motion in Plane

143524 If \(\vec{A}, \vec{B}\) are perpendicular vectors
\(\overrightarrow{\mathrm{A}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\mathbf{c} \hat{\mathbf{k}}\)
The value of \(c\) is

1 -2
2 8
3 -7
4 -8
Motion in Plane

143525 The resultant of the vectors \(A\) and \(B\) depends also on the angle \(\theta\) between them. The magnitude of the resultant is always given by

1 \(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta\)
2 \(\sqrt{(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta)}\)
3 \(\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\right)\)
Motion in Plane

143526 \(\quad \overrightarrow{\mathbf{A}}\) and \(\overrightarrow{\mathbf{B}}\) are vectors such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\) \(|\vec{A}-\vec{B}|\). Then, the angle between them is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143527 When two vectors \(\vec{A}\) and \(\vec{B}\) of magnitude a and \(b\) are added, the magnitude of the resultant vector is always

1 equal to \((a+b)\)
2 less than \((a+b)\)
3 greater than \((\mathrm{a}+\mathrm{b})\)
4 not greater than \((\mathrm{a}+\mathrm{b})\)
Motion in Plane

143529 The angle made by the vector \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) with \(\mathbf{x}\) axis is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(22.5^{\circ}\)
4 \(30^{\circ}\)
Motion in Plane

143524 If \(\vec{A}, \vec{B}\) are perpendicular vectors
\(\overrightarrow{\mathrm{A}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\mathbf{c} \hat{\mathbf{k}}\)
The value of \(c\) is

1 -2
2 8
3 -7
4 -8
Motion in Plane

143525 The resultant of the vectors \(A\) and \(B\) depends also on the angle \(\theta\) between them. The magnitude of the resultant is always given by

1 \(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta\)
2 \(\sqrt{(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta)}\)
3 \(\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\right)\)
Motion in Plane

143526 \(\quad \overrightarrow{\mathbf{A}}\) and \(\overrightarrow{\mathbf{B}}\) are vectors such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\) \(|\vec{A}-\vec{B}|\). Then, the angle between them is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143527 When two vectors \(\vec{A}\) and \(\vec{B}\) of magnitude a and \(b\) are added, the magnitude of the resultant vector is always

1 equal to \((a+b)\)
2 less than \((a+b)\)
3 greater than \((\mathrm{a}+\mathrm{b})\)
4 not greater than \((\mathrm{a}+\mathrm{b})\)
Motion in Plane

143529 The angle made by the vector \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) with \(\mathbf{x}\) axis is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(22.5^{\circ}\)
4 \(30^{\circ}\)
Motion in Plane

143524 If \(\vec{A}, \vec{B}\) are perpendicular vectors
\(\overrightarrow{\mathrm{A}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\mathbf{c} \hat{\mathbf{k}}\)
The value of \(c\) is

1 -2
2 8
3 -7
4 -8
Motion in Plane

143525 The resultant of the vectors \(A\) and \(B\) depends also on the angle \(\theta\) between them. The magnitude of the resultant is always given by

1 \(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta\)
2 \(\sqrt{(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta)}\)
3 \(\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\right)\)
Motion in Plane

143526 \(\quad \overrightarrow{\mathbf{A}}\) and \(\overrightarrow{\mathbf{B}}\) are vectors such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\) \(|\vec{A}-\vec{B}|\). Then, the angle between them is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143527 When two vectors \(\vec{A}\) and \(\vec{B}\) of magnitude a and \(b\) are added, the magnitude of the resultant vector is always

1 equal to \((a+b)\)
2 less than \((a+b)\)
3 greater than \((\mathrm{a}+\mathrm{b})\)
4 not greater than \((\mathrm{a}+\mathrm{b})\)
Motion in Plane

143529 The angle made by the vector \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) with \(\mathbf{x}\) axis is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(22.5^{\circ}\)
4 \(30^{\circ}\)
Motion in Plane

143524 If \(\vec{A}, \vec{B}\) are perpendicular vectors
\(\overrightarrow{\mathrm{A}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\mathbf{c} \hat{\mathbf{k}}\)
The value of \(c\) is

1 -2
2 8
3 -7
4 -8
Motion in Plane

143525 The resultant of the vectors \(A\) and \(B\) depends also on the angle \(\theta\) between them. The magnitude of the resultant is always given by

1 \(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta\)
2 \(\sqrt{(\mathrm{A}+\mathrm{B}+2 \mathrm{AB} \cos \theta)}\)
3 \(\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\right)\)
Motion in Plane

143526 \(\quad \overrightarrow{\mathbf{A}}\) and \(\overrightarrow{\mathbf{B}}\) are vectors such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\) \(|\vec{A}-\vec{B}|\). Then, the angle between them is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143527 When two vectors \(\vec{A}\) and \(\vec{B}\) of magnitude a and \(b\) are added, the magnitude of the resultant vector is always

1 equal to \((a+b)\)
2 less than \((a+b)\)
3 greater than \((\mathrm{a}+\mathrm{b})\)
4 not greater than \((\mathrm{a}+\mathrm{b})\)
Motion in Plane

143529 The angle made by the vector \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) with \(\mathbf{x}\) axis is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(22.5^{\circ}\)
4 \(30^{\circ}\)