03. Equation of Motion
Motion in One Dimensions

141696 A particle moves along a straight line \(O X\). At a time \(t\) (in second), the distance \(x\) (in metre) of the particle from \(O\) is given by \(x=40+12 t-t^{3}\). How long would the particle travel before coming to rest?

1 \(24 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(56 \mathrm{~m}\)
4 \(16 \mathrm{~m}\)
Motion in One Dimensions

141697 The distance travelled by a particle starting from rest and moving with an acceleration \(\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}\), in the third second is.

1 \(10 / 3 \mathrm{~m}\)
2 \(19 / 3 \mathrm{~m}\)
3 \(6 \mathrm{~m}\)
4 \(4 \mathrm{~m}\)
Motion in One Dimensions

141698 A ball under uniform acceleration travels \(6 \mathrm{~m}\) in first \(2 \mathrm{~s}\) and \(16 \mathrm{~m}\) in the next \(2 \mathrm{~s}\). Its initial velocity is

1 \(\frac{1}{2} \mathrm{~m} / \mathrm{s}\)
2 \(1 \mathrm{~m} / \mathrm{s}\)
3 \(\frac{8}{3} \mathrm{~m} / \mathrm{s}\)
4 \(\frac{1}{4} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141699 The position of a particle is \(r=x i+y j\) where \(x\) and \(y\) are function of time \(t\) and given as \(x=\left(12+5 t-t^{2}\right) m\) and \(y=\left(18+5 t-t^{2}\right) m\). At \(t=\) \(1 \mathrm{~s}\), the magnitude of the velocity vector of the particle is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
2 \(3 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
3 \(4 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
4 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141700 The velocity-time(v-t) relation of a particle moving in a plane is \(v=3 t^{2} \mathrm{~m} / \mathrm{s}\). At \(\mathbf{t}=\mathbf{0}\); displacement \(x=8 \mathrm{~m}\). The velocity of the particle at \(x=16 \mathrm{~m}\) is

1 \(12 \mathrm{~m} / \mathrm{s}\)
2 \(14 \mathrm{~m} / \mathrm{s}\)
3 \(18 \mathrm{~m} / \mathrm{s}\)
4 \(10 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141696 A particle moves along a straight line \(O X\). At a time \(t\) (in second), the distance \(x\) (in metre) of the particle from \(O\) is given by \(x=40+12 t-t^{3}\). How long would the particle travel before coming to rest?

1 \(24 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(56 \mathrm{~m}\)
4 \(16 \mathrm{~m}\)
Motion in One Dimensions

141697 The distance travelled by a particle starting from rest and moving with an acceleration \(\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}\), in the third second is.

1 \(10 / 3 \mathrm{~m}\)
2 \(19 / 3 \mathrm{~m}\)
3 \(6 \mathrm{~m}\)
4 \(4 \mathrm{~m}\)
Motion in One Dimensions

141698 A ball under uniform acceleration travels \(6 \mathrm{~m}\) in first \(2 \mathrm{~s}\) and \(16 \mathrm{~m}\) in the next \(2 \mathrm{~s}\). Its initial velocity is

1 \(\frac{1}{2} \mathrm{~m} / \mathrm{s}\)
2 \(1 \mathrm{~m} / \mathrm{s}\)
3 \(\frac{8}{3} \mathrm{~m} / \mathrm{s}\)
4 \(\frac{1}{4} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141699 The position of a particle is \(r=x i+y j\) where \(x\) and \(y\) are function of time \(t\) and given as \(x=\left(12+5 t-t^{2}\right) m\) and \(y=\left(18+5 t-t^{2}\right) m\). At \(t=\) \(1 \mathrm{~s}\), the magnitude of the velocity vector of the particle is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
2 \(3 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
3 \(4 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
4 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141700 The velocity-time(v-t) relation of a particle moving in a plane is \(v=3 t^{2} \mathrm{~m} / \mathrm{s}\). At \(\mathbf{t}=\mathbf{0}\); displacement \(x=8 \mathrm{~m}\). The velocity of the particle at \(x=16 \mathrm{~m}\) is

1 \(12 \mathrm{~m} / \mathrm{s}\)
2 \(14 \mathrm{~m} / \mathrm{s}\)
3 \(18 \mathrm{~m} / \mathrm{s}\)
4 \(10 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141696 A particle moves along a straight line \(O X\). At a time \(t\) (in second), the distance \(x\) (in metre) of the particle from \(O\) is given by \(x=40+12 t-t^{3}\). How long would the particle travel before coming to rest?

1 \(24 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(56 \mathrm{~m}\)
4 \(16 \mathrm{~m}\)
Motion in One Dimensions

141697 The distance travelled by a particle starting from rest and moving with an acceleration \(\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}\), in the third second is.

1 \(10 / 3 \mathrm{~m}\)
2 \(19 / 3 \mathrm{~m}\)
3 \(6 \mathrm{~m}\)
4 \(4 \mathrm{~m}\)
Motion in One Dimensions

141698 A ball under uniform acceleration travels \(6 \mathrm{~m}\) in first \(2 \mathrm{~s}\) and \(16 \mathrm{~m}\) in the next \(2 \mathrm{~s}\). Its initial velocity is

1 \(\frac{1}{2} \mathrm{~m} / \mathrm{s}\)
2 \(1 \mathrm{~m} / \mathrm{s}\)
3 \(\frac{8}{3} \mathrm{~m} / \mathrm{s}\)
4 \(\frac{1}{4} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141699 The position of a particle is \(r=x i+y j\) where \(x\) and \(y\) are function of time \(t\) and given as \(x=\left(12+5 t-t^{2}\right) m\) and \(y=\left(18+5 t-t^{2}\right) m\). At \(t=\) \(1 \mathrm{~s}\), the magnitude of the velocity vector of the particle is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
2 \(3 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
3 \(4 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
4 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141700 The velocity-time(v-t) relation of a particle moving in a plane is \(v=3 t^{2} \mathrm{~m} / \mathrm{s}\). At \(\mathbf{t}=\mathbf{0}\); displacement \(x=8 \mathrm{~m}\). The velocity of the particle at \(x=16 \mathrm{~m}\) is

1 \(12 \mathrm{~m} / \mathrm{s}\)
2 \(14 \mathrm{~m} / \mathrm{s}\)
3 \(18 \mathrm{~m} / \mathrm{s}\)
4 \(10 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141696 A particle moves along a straight line \(O X\). At a time \(t\) (in second), the distance \(x\) (in metre) of the particle from \(O\) is given by \(x=40+12 t-t^{3}\). How long would the particle travel before coming to rest?

1 \(24 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(56 \mathrm{~m}\)
4 \(16 \mathrm{~m}\)
Motion in One Dimensions

141697 The distance travelled by a particle starting from rest and moving with an acceleration \(\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}\), in the third second is.

1 \(10 / 3 \mathrm{~m}\)
2 \(19 / 3 \mathrm{~m}\)
3 \(6 \mathrm{~m}\)
4 \(4 \mathrm{~m}\)
Motion in One Dimensions

141698 A ball under uniform acceleration travels \(6 \mathrm{~m}\) in first \(2 \mathrm{~s}\) and \(16 \mathrm{~m}\) in the next \(2 \mathrm{~s}\). Its initial velocity is

1 \(\frac{1}{2} \mathrm{~m} / \mathrm{s}\)
2 \(1 \mathrm{~m} / \mathrm{s}\)
3 \(\frac{8}{3} \mathrm{~m} / \mathrm{s}\)
4 \(\frac{1}{4} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141699 The position of a particle is \(r=x i+y j\) where \(x\) and \(y\) are function of time \(t\) and given as \(x=\left(12+5 t-t^{2}\right) m\) and \(y=\left(18+5 t-t^{2}\right) m\). At \(t=\) \(1 \mathrm{~s}\), the magnitude of the velocity vector of the particle is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
2 \(3 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
3 \(4 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
4 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141700 The velocity-time(v-t) relation of a particle moving in a plane is \(v=3 t^{2} \mathrm{~m} / \mathrm{s}\). At \(\mathbf{t}=\mathbf{0}\); displacement \(x=8 \mathrm{~m}\). The velocity of the particle at \(x=16 \mathrm{~m}\) is

1 \(12 \mathrm{~m} / \mathrm{s}\)
2 \(14 \mathrm{~m} / \mathrm{s}\)
3 \(18 \mathrm{~m} / \mathrm{s}\)
4 \(10 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141696 A particle moves along a straight line \(O X\). At a time \(t\) (in second), the distance \(x\) (in metre) of the particle from \(O\) is given by \(x=40+12 t-t^{3}\). How long would the particle travel before coming to rest?

1 \(24 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(56 \mathrm{~m}\)
4 \(16 \mathrm{~m}\)
Motion in One Dimensions

141697 The distance travelled by a particle starting from rest and moving with an acceleration \(\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}\), in the third second is.

1 \(10 / 3 \mathrm{~m}\)
2 \(19 / 3 \mathrm{~m}\)
3 \(6 \mathrm{~m}\)
4 \(4 \mathrm{~m}\)
Motion in One Dimensions

141698 A ball under uniform acceleration travels \(6 \mathrm{~m}\) in first \(2 \mathrm{~s}\) and \(16 \mathrm{~m}\) in the next \(2 \mathrm{~s}\). Its initial velocity is

1 \(\frac{1}{2} \mathrm{~m} / \mathrm{s}\)
2 \(1 \mathrm{~m} / \mathrm{s}\)
3 \(\frac{8}{3} \mathrm{~m} / \mathrm{s}\)
4 \(\frac{1}{4} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141699 The position of a particle is \(r=x i+y j\) where \(x\) and \(y\) are function of time \(t\) and given as \(x=\left(12+5 t-t^{2}\right) m\) and \(y=\left(18+5 t-t^{2}\right) m\). At \(t=\) \(1 \mathrm{~s}\), the magnitude of the velocity vector of the particle is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
2 \(3 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
3 \(4 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
4 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141700 The velocity-time(v-t) relation of a particle moving in a plane is \(v=3 t^{2} \mathrm{~m} / \mathrm{s}\). At \(\mathbf{t}=\mathbf{0}\); displacement \(x=8 \mathrm{~m}\). The velocity of the particle at \(x=16 \mathrm{~m}\) is

1 \(12 \mathrm{~m} / \mathrm{s}\)
2 \(14 \mathrm{~m} / \mathrm{s}\)
3 \(18 \mathrm{~m} / \mathrm{s}\)
4 \(10 \mathrm{~m} / \mathrm{s}\)