00. Distance and Displacement
Motion in One Dimensions

141174 A particle starts from rest. Its acceleration (a) versus time ( \(t\) ) is as shown in the figure. The maximum speed of the particle will be
original image

1 \(150 \mathrm{~m} / \mathrm{s}\)
2 \(75 \mathrm{~m} / \mathrm{s}\)
3 \(37.5 \mathrm{~m} / \mathrm{s}\)
4 \(45 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141176 A time varying force acts on a ball of mass 100 \(\mathrm{g}\) for \(2 \mathrm{~ms}\). The force versus time curve is shown below. If the initial speed of the ball is \(10 \mathrm{~m} / \mathrm{s}\), then the speed of ball after \(2 \mathrm{~ms}\) is
original image

1 \(210 \mathrm{~m} / \mathrm{s}\)
2 \(410 \mathrm{~m} / \mathrm{s}\)
3 \(200 \mathrm{~m} / \mathrm{s}\)
4 \(400 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141177 A body starts from the rest and acquires a velocity of \(10 \mathrm{~m} / \mathrm{s}\) in \(2 \mathrm{~s}\). What is the acceleration of the body and the distance travelled

1 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(10 \mathrm{~m}\)
2 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
3 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(6 \mathrm{~m}\)
4 \(6 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
Motion in One Dimensions

141178 A rocket moves straight upward with zero initial velocity and with an acceleration \(20 \mathrm{~m} / \mathrm{s}^{2}\). It runs out of fuel and stops accelerating at the end of \(5^{\text {th }}\) sec. It reaches a maximum height and falls back to the earth. The speed when it hits the ground is (Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) )

1 \(100 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
2 \(150 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
3 \(50 \sqrt{6} \mathrm{~m} / \mathrm{s}\)
4 \(75 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141174 A particle starts from rest. Its acceleration (a) versus time ( \(t\) ) is as shown in the figure. The maximum speed of the particle will be
original image

1 \(150 \mathrm{~m} / \mathrm{s}\)
2 \(75 \mathrm{~m} / \mathrm{s}\)
3 \(37.5 \mathrm{~m} / \mathrm{s}\)
4 \(45 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141176 A time varying force acts on a ball of mass 100 \(\mathrm{g}\) for \(2 \mathrm{~ms}\). The force versus time curve is shown below. If the initial speed of the ball is \(10 \mathrm{~m} / \mathrm{s}\), then the speed of ball after \(2 \mathrm{~ms}\) is
original image

1 \(210 \mathrm{~m} / \mathrm{s}\)
2 \(410 \mathrm{~m} / \mathrm{s}\)
3 \(200 \mathrm{~m} / \mathrm{s}\)
4 \(400 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141177 A body starts from the rest and acquires a velocity of \(10 \mathrm{~m} / \mathrm{s}\) in \(2 \mathrm{~s}\). What is the acceleration of the body and the distance travelled

1 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(10 \mathrm{~m}\)
2 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
3 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(6 \mathrm{~m}\)
4 \(6 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
Motion in One Dimensions

141178 A rocket moves straight upward with zero initial velocity and with an acceleration \(20 \mathrm{~m} / \mathrm{s}^{2}\). It runs out of fuel and stops accelerating at the end of \(5^{\text {th }}\) sec. It reaches a maximum height and falls back to the earth. The speed when it hits the ground is (Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) )

1 \(100 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
2 \(150 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
3 \(50 \sqrt{6} \mathrm{~m} / \mathrm{s}\)
4 \(75 \mathrm{~m} / \mathrm{s}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in One Dimensions

141174 A particle starts from rest. Its acceleration (a) versus time ( \(t\) ) is as shown in the figure. The maximum speed of the particle will be
original image

1 \(150 \mathrm{~m} / \mathrm{s}\)
2 \(75 \mathrm{~m} / \mathrm{s}\)
3 \(37.5 \mathrm{~m} / \mathrm{s}\)
4 \(45 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141176 A time varying force acts on a ball of mass 100 \(\mathrm{g}\) for \(2 \mathrm{~ms}\). The force versus time curve is shown below. If the initial speed of the ball is \(10 \mathrm{~m} / \mathrm{s}\), then the speed of ball after \(2 \mathrm{~ms}\) is
original image

1 \(210 \mathrm{~m} / \mathrm{s}\)
2 \(410 \mathrm{~m} / \mathrm{s}\)
3 \(200 \mathrm{~m} / \mathrm{s}\)
4 \(400 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141177 A body starts from the rest and acquires a velocity of \(10 \mathrm{~m} / \mathrm{s}\) in \(2 \mathrm{~s}\). What is the acceleration of the body and the distance travelled

1 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(10 \mathrm{~m}\)
2 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
3 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(6 \mathrm{~m}\)
4 \(6 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
Motion in One Dimensions

141178 A rocket moves straight upward with zero initial velocity and with an acceleration \(20 \mathrm{~m} / \mathrm{s}^{2}\). It runs out of fuel and stops accelerating at the end of \(5^{\text {th }}\) sec. It reaches a maximum height and falls back to the earth. The speed when it hits the ground is (Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) )

1 \(100 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
2 \(150 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
3 \(50 \sqrt{6} \mathrm{~m} / \mathrm{s}\)
4 \(75 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141174 A particle starts from rest. Its acceleration (a) versus time ( \(t\) ) is as shown in the figure. The maximum speed of the particle will be
original image

1 \(150 \mathrm{~m} / \mathrm{s}\)
2 \(75 \mathrm{~m} / \mathrm{s}\)
3 \(37.5 \mathrm{~m} / \mathrm{s}\)
4 \(45 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141176 A time varying force acts on a ball of mass 100 \(\mathrm{g}\) for \(2 \mathrm{~ms}\). The force versus time curve is shown below. If the initial speed of the ball is \(10 \mathrm{~m} / \mathrm{s}\), then the speed of ball after \(2 \mathrm{~ms}\) is
original image

1 \(210 \mathrm{~m} / \mathrm{s}\)
2 \(410 \mathrm{~m} / \mathrm{s}\)
3 \(200 \mathrm{~m} / \mathrm{s}\)
4 \(400 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141177 A body starts from the rest and acquires a velocity of \(10 \mathrm{~m} / \mathrm{s}\) in \(2 \mathrm{~s}\). What is the acceleration of the body and the distance travelled

1 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(10 \mathrm{~m}\)
2 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
3 \(5 \mathrm{~m} / \mathrm{s}^{2}\) and \(6 \mathrm{~m}\)
4 \(6 \mathrm{~m} / \mathrm{s}^{2}\) and \(5 \mathrm{~m}\)
Motion in One Dimensions

141178 A rocket moves straight upward with zero initial velocity and with an acceleration \(20 \mathrm{~m} / \mathrm{s}^{2}\). It runs out of fuel and stops accelerating at the end of \(5^{\text {th }}\) sec. It reaches a maximum height and falls back to the earth. The speed when it hits the ground is (Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) )

1 \(100 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
2 \(150 \sqrt{3} \mathrm{~m} / \mathrm{s}\)
3 \(50 \sqrt{6} \mathrm{~m} / \mathrm{s}\)
4 \(75 \mathrm{~m} / \mathrm{s}\)