04. Spectrochemical Series, Complex Stability
COORDINATION COMPOUNDS

274318 The correct order for the wavlelength of absorption in the visible region is:

1 ${\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} } <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2 $\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} <\mathrm{Ni}\left(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\left.<\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
3 $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
4 $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4-}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
COORDINATION COMPOUNDS

274320 The number of unpaired electrons in $\mathrm{Ni}(\mathrm{CO})_{4}$ is-

1 0
2 1
3 3
4 4
COORDINATION COMPOUNDS

274326 Crystal field stabilization energy for high spin $\mathrm{d}^{4}$ octahedral complex is

1 $-1.8 \Delta_{0}$
2 $-1.6 \Delta_{0}+P$
3 $-1.2 \Delta_{0}$
4 $-0.6 \Delta_{0}$
COORDINATION COMPOUNDS

274327 Low spin complex of $d^{6}$-cation in an octahedral field will have the following energy

1 $\frac{-12}{5} \Delta_{0}+P$
2 $\frac{-12}{5} \Delta_{0}+3 \mathrm{P}$
3 $\frac{-2}{5} \Delta_{0}+2 \mathrm{P}$
4 $\frac{-2}{5} \Delta_{0}+P$
$\left(\Delta_{0}=\right.$ crystal field splitting energy in an octahedral field, $\mathrm{P}=$ Electron pairing energy)
COORDINATION COMPOUNDS

274318 The correct order for the wavlelength of absorption in the visible region is:

1 ${\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} } <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2 $\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} <\mathrm{Ni}\left(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\left.<\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
3 $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
4 $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4-}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
COORDINATION COMPOUNDS

274320 The number of unpaired electrons in $\mathrm{Ni}(\mathrm{CO})_{4}$ is-

1 0
2 1
3 3
4 4
COORDINATION COMPOUNDS

274326 Crystal field stabilization energy for high spin $\mathrm{d}^{4}$ octahedral complex is

1 $-1.8 \Delta_{0}$
2 $-1.6 \Delta_{0}+P$
3 $-1.2 \Delta_{0}$
4 $-0.6 \Delta_{0}$
COORDINATION COMPOUNDS

274327 Low spin complex of $d^{6}$-cation in an octahedral field will have the following energy

1 $\frac{-12}{5} \Delta_{0}+P$
2 $\frac{-12}{5} \Delta_{0}+3 \mathrm{P}$
3 $\frac{-2}{5} \Delta_{0}+2 \mathrm{P}$
4 $\frac{-2}{5} \Delta_{0}+P$
$\left(\Delta_{0}=\right.$ crystal field splitting energy in an octahedral field, $\mathrm{P}=$ Electron pairing energy)
COORDINATION COMPOUNDS

274318 The correct order for the wavlelength of absorption in the visible region is:

1 ${\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} } <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2 $\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} <\mathrm{Ni}\left(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\left.<\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
3 $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
4 $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4-}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
COORDINATION COMPOUNDS

274320 The number of unpaired electrons in $\mathrm{Ni}(\mathrm{CO})_{4}$ is-

1 0
2 1
3 3
4 4
COORDINATION COMPOUNDS

274326 Crystal field stabilization energy for high spin $\mathrm{d}^{4}$ octahedral complex is

1 $-1.8 \Delta_{0}$
2 $-1.6 \Delta_{0}+P$
3 $-1.2 \Delta_{0}$
4 $-0.6 \Delta_{0}$
COORDINATION COMPOUNDS

274327 Low spin complex of $d^{6}$-cation in an octahedral field will have the following energy

1 $\frac{-12}{5} \Delta_{0}+P$
2 $\frac{-12}{5} \Delta_{0}+3 \mathrm{P}$
3 $\frac{-2}{5} \Delta_{0}+2 \mathrm{P}$
4 $\frac{-2}{5} \Delta_{0}+P$
$\left(\Delta_{0}=\right.$ crystal field splitting energy in an octahedral field, $\mathrm{P}=$ Electron pairing energy)
COORDINATION COMPOUNDS

274318 The correct order for the wavlelength of absorption in the visible region is:

1 ${\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} } <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2 $\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-} <\mathrm{Ni}\left(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\left.<\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
3 $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
4 $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} <\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4-}$
$<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
COORDINATION COMPOUNDS

274320 The number of unpaired electrons in $\mathrm{Ni}(\mathrm{CO})_{4}$ is-

1 0
2 1
3 3
4 4
COORDINATION COMPOUNDS

274326 Crystal field stabilization energy for high spin $\mathrm{d}^{4}$ octahedral complex is

1 $-1.8 \Delta_{0}$
2 $-1.6 \Delta_{0}+P$
3 $-1.2 \Delta_{0}$
4 $-0.6 \Delta_{0}$
COORDINATION COMPOUNDS

274327 Low spin complex of $d^{6}$-cation in an octahedral field will have the following energy

1 $\frac{-12}{5} \Delta_{0}+P$
2 $\frac{-12}{5} \Delta_{0}+3 \mathrm{P}$
3 $\frac{-2}{5} \Delta_{0}+2 \mathrm{P}$
4 $\frac{-2}{5} \Delta_{0}+P$
$\left(\Delta_{0}=\right.$ crystal field splitting energy in an octahedral field, $\mathrm{P}=$ Electron pairing energy)