04. Conductance and Conductor
ELECTROCHEMISTRY

276144 Given
$\lambda_{\mathrm{Mg}^{2+}}^{\circ}=106 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}, \lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}=160 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}$.
The value of $\lambda_{\mathrm{MgSO}_{4}}^{\circ}$ (in $\mathrm{S} \mathrm{cm}^{2}$ mole $^{-1}$ ) is

1 271.6
2 266
3 390
4 126
ELECTROCHEMISTRY

276145 The molar conductivities of $\mathrm{KCl}$. $\mathrm{NaCl}$ and $\mathrm{KNO}_{3}$ are 100, 120 and $90 \mathrm{~cm}^{2} . \mathrm{mol}^{-1}$. respectively. The molar conductivity of $\mathrm{NaNO}_{3}$ would be

1 110
2 290
3 310
4 120 $\mathrm{cm}^{2} . \mathrm{mol}^{-1}$.
ELECTROCHEMISTRY

276146 The molar conductivity of $\mathrm{AgNO}_{3}, \mathrm{NaCl}$, and $\mathrm{NaNO}_{3}$ at infinite dilution are 116.5, 110.3, and $105.2 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. In the same unit, the molar conductivity of $\mathrm{AgCl}$ is

1 121.6
2 111.4
3 130.6
4 150.2
ELECTROCHEMISTRY

276147 The variation of molar conductivity with concentration of an electrolyte $(X)$ in aqueous solution is shown in the given figure.

The electrolyte $\mathrm{X}$ is

1 $\mathrm{HCl}$
2 $\mathrm{NaCl}$
3 $\mathrm{KNO}_{3}$
4 $\mathrm{CH}_{3} \mathrm{COOH}$
ELECTROCHEMISTRY

276144 Given
$\lambda_{\mathrm{Mg}^{2+}}^{\circ}=106 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}, \lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}=160 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}$.
The value of $\lambda_{\mathrm{MgSO}_{4}}^{\circ}$ (in $\mathrm{S} \mathrm{cm}^{2}$ mole $^{-1}$ ) is

1 271.6
2 266
3 390
4 126
ELECTROCHEMISTRY

276145 The molar conductivities of $\mathrm{KCl}$. $\mathrm{NaCl}$ and $\mathrm{KNO}_{3}$ are 100, 120 and $90 \mathrm{~cm}^{2} . \mathrm{mol}^{-1}$. respectively. The molar conductivity of $\mathrm{NaNO}_{3}$ would be

1 110
2 290
3 310
4 120 $\mathrm{cm}^{2} . \mathrm{mol}^{-1}$.
ELECTROCHEMISTRY

276146 The molar conductivity of $\mathrm{AgNO}_{3}, \mathrm{NaCl}$, and $\mathrm{NaNO}_{3}$ at infinite dilution are 116.5, 110.3, and $105.2 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. In the same unit, the molar conductivity of $\mathrm{AgCl}$ is

1 121.6
2 111.4
3 130.6
4 150.2
ELECTROCHEMISTRY

276147 The variation of molar conductivity with concentration of an electrolyte $(X)$ in aqueous solution is shown in the given figure.

The electrolyte $\mathrm{X}$ is

1 $\mathrm{HCl}$
2 $\mathrm{NaCl}$
3 $\mathrm{KNO}_{3}$
4 $\mathrm{CH}_{3} \mathrm{COOH}$
ELECTROCHEMISTRY

276144 Given
$\lambda_{\mathrm{Mg}^{2+}}^{\circ}=106 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}, \lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}=160 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}$.
The value of $\lambda_{\mathrm{MgSO}_{4}}^{\circ}$ (in $\mathrm{S} \mathrm{cm}^{2}$ mole $^{-1}$ ) is

1 271.6
2 266
3 390
4 126
ELECTROCHEMISTRY

276145 The molar conductivities of $\mathrm{KCl}$. $\mathrm{NaCl}$ and $\mathrm{KNO}_{3}$ are 100, 120 and $90 \mathrm{~cm}^{2} . \mathrm{mol}^{-1}$. respectively. The molar conductivity of $\mathrm{NaNO}_{3}$ would be

1 110
2 290
3 310
4 120 $\mathrm{cm}^{2} . \mathrm{mol}^{-1}$.
ELECTROCHEMISTRY

276146 The molar conductivity of $\mathrm{AgNO}_{3}, \mathrm{NaCl}$, and $\mathrm{NaNO}_{3}$ at infinite dilution are 116.5, 110.3, and $105.2 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. In the same unit, the molar conductivity of $\mathrm{AgCl}$ is

1 121.6
2 111.4
3 130.6
4 150.2
ELECTROCHEMISTRY

276147 The variation of molar conductivity with concentration of an electrolyte $(X)$ in aqueous solution is shown in the given figure.

The electrolyte $\mathrm{X}$ is

1 $\mathrm{HCl}$
2 $\mathrm{NaCl}$
3 $\mathrm{KNO}_{3}$
4 $\mathrm{CH}_{3} \mathrm{COOH}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276144 Given
$\lambda_{\mathrm{Mg}^{2+}}^{\circ}=106 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}, \lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}=160 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}$.
The value of $\lambda_{\mathrm{MgSO}_{4}}^{\circ}$ (in $\mathrm{S} \mathrm{cm}^{2}$ mole $^{-1}$ ) is

1 271.6
2 266
3 390
4 126
ELECTROCHEMISTRY

276145 The molar conductivities of $\mathrm{KCl}$. $\mathrm{NaCl}$ and $\mathrm{KNO}_{3}$ are 100, 120 and $90 \mathrm{~cm}^{2} . \mathrm{mol}^{-1}$. respectively. The molar conductivity of $\mathrm{NaNO}_{3}$ would be

1 110
2 290
3 310
4 120 $\mathrm{cm}^{2} . \mathrm{mol}^{-1}$.
ELECTROCHEMISTRY

276146 The molar conductivity of $\mathrm{AgNO}_{3}, \mathrm{NaCl}$, and $\mathrm{NaNO}_{3}$ at infinite dilution are 116.5, 110.3, and $105.2 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. In the same unit, the molar conductivity of $\mathrm{AgCl}$ is

1 121.6
2 111.4
3 130.6
4 150.2
ELECTROCHEMISTRY

276147 The variation of molar conductivity with concentration of an electrolyte $(X)$ in aqueous solution is shown in the given figure.

The electrolyte $\mathrm{X}$ is

1 $\mathrm{HCl}$
2 $\mathrm{NaCl}$
3 $\mathrm{KNO}_{3}$
4 $\mathrm{CH}_{3} \mathrm{COOH}$