276122
At $298 \mathrm{~K}$, the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are 0.34 $\mathrm{V},-\mathbf{0 . 7 6} \mathrm{V},-\mathbf{0 . 4 4} \mathrm{V}$ and $0.80 \mathrm{~V}$ respectively.
On the basis of standard electrode potential, predict which of the following reaction can not occur?
276123
For
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \stackrel{\text { yields }}{\longrightarrow} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \text { O.E }$
$=1.33 \mathrm{Vat}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=4.5$ millimole. $\left[\mathrm{Cr}^{3+}\right]=$ 1.5 millimole and $E=1.067 \mathrm{~V}$. Then calculate the $\mathrm{pH}$ of the solution.
276124 $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}), \mathrm{E}_{\text {cell }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is
276125 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$ $\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ find the value of equilibrium constant at $295 \mathrm{~K}$. Given, standard Gibbs energy change at the given temperature is $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
276127 Standard cell voltage for the cell $\mathrm{Pb}\left \vert\mathrm{Pb}^{2+} \ \vert \mathrm{Sn}^{2+}\right \vert \mathrm{Sn}$ is $-0.01 \mathrm{~V}$. If the cell is to exhibit $E_{\text {cell }}=0$, the value of $\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]$ should be antilog of -
276122
At $298 \mathrm{~K}$, the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are 0.34 $\mathrm{V},-\mathbf{0 . 7 6} \mathrm{V},-\mathbf{0 . 4 4} \mathrm{V}$ and $0.80 \mathrm{~V}$ respectively.
On the basis of standard electrode potential, predict which of the following reaction can not occur?
276123
For
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \stackrel{\text { yields }}{\longrightarrow} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \text { O.E }$
$=1.33 \mathrm{Vat}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=4.5$ millimole. $\left[\mathrm{Cr}^{3+}\right]=$ 1.5 millimole and $E=1.067 \mathrm{~V}$. Then calculate the $\mathrm{pH}$ of the solution.
276124 $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}), \mathrm{E}_{\text {cell }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is
276125 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$ $\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ find the value of equilibrium constant at $295 \mathrm{~K}$. Given, standard Gibbs energy change at the given temperature is $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
276127 Standard cell voltage for the cell $\mathrm{Pb}\left \vert\mathrm{Pb}^{2+} \ \vert \mathrm{Sn}^{2+}\right \vert \mathrm{Sn}$ is $-0.01 \mathrm{~V}$. If the cell is to exhibit $E_{\text {cell }}=0$, the value of $\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]$ should be antilog of -
276122
At $298 \mathrm{~K}$, the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are 0.34 $\mathrm{V},-\mathbf{0 . 7 6} \mathrm{V},-\mathbf{0 . 4 4} \mathrm{V}$ and $0.80 \mathrm{~V}$ respectively.
On the basis of standard electrode potential, predict which of the following reaction can not occur?
276123
For
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \stackrel{\text { yields }}{\longrightarrow} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \text { O.E }$
$=1.33 \mathrm{Vat}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=4.5$ millimole. $\left[\mathrm{Cr}^{3+}\right]=$ 1.5 millimole and $E=1.067 \mathrm{~V}$. Then calculate the $\mathrm{pH}$ of the solution.
276124 $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}), \mathrm{E}_{\text {cell }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is
276125 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$ $\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ find the value of equilibrium constant at $295 \mathrm{~K}$. Given, standard Gibbs energy change at the given temperature is $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
276127 Standard cell voltage for the cell $\mathrm{Pb}\left \vert\mathrm{Pb}^{2+} \ \vert \mathrm{Sn}^{2+}\right \vert \mathrm{Sn}$ is $-0.01 \mathrm{~V}$. If the cell is to exhibit $E_{\text {cell }}=0$, the value of $\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]$ should be antilog of -
276122
At $298 \mathrm{~K}$, the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are 0.34 $\mathrm{V},-\mathbf{0 . 7 6} \mathrm{V},-\mathbf{0 . 4 4} \mathrm{V}$ and $0.80 \mathrm{~V}$ respectively.
On the basis of standard electrode potential, predict which of the following reaction can not occur?
276123
For
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \stackrel{\text { yields }}{\longrightarrow} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \text { O.E }$
$=1.33 \mathrm{Vat}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=4.5$ millimole. $\left[\mathrm{Cr}^{3+}\right]=$ 1.5 millimole and $E=1.067 \mathrm{~V}$. Then calculate the $\mathrm{pH}$ of the solution.
276124 $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}), \mathrm{E}_{\text {cell }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is
276125 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$ $\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ find the value of equilibrium constant at $295 \mathrm{~K}$. Given, standard Gibbs energy change at the given temperature is $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
276127 Standard cell voltage for the cell $\mathrm{Pb}\left \vert\mathrm{Pb}^{2+} \ \vert \mathrm{Sn}^{2+}\right \vert \mathrm{Sn}$ is $-0.01 \mathrm{~V}$. If the cell is to exhibit $E_{\text {cell }}=0$, the value of $\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]$ should be antilog of -
276122
At $298 \mathrm{~K}$, the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are 0.34 $\mathrm{V},-\mathbf{0 . 7 6} \mathrm{V},-\mathbf{0 . 4 4} \mathrm{V}$ and $0.80 \mathrm{~V}$ respectively.
On the basis of standard electrode potential, predict which of the following reaction can not occur?
276123
For
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \stackrel{\text { yields }}{\longrightarrow} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \text { O.E }$
$=1.33 \mathrm{Vat}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=4.5$ millimole. $\left[\mathrm{Cr}^{3+}\right]=$ 1.5 millimole and $E=1.067 \mathrm{~V}$. Then calculate the $\mathrm{pH}$ of the solution.
276124 $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}), \mathrm{E}_{\text {cell }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is
276125 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$ $\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ find the value of equilibrium constant at $295 \mathrm{~K}$. Given, standard Gibbs energy change at the given temperature is $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
276127 Standard cell voltage for the cell $\mathrm{Pb}\left \vert\mathrm{Pb}^{2+} \ \vert \mathrm{Sn}^{2+}\right \vert \mathrm{Sn}$ is $-0.01 \mathrm{~V}$. If the cell is to exhibit $E_{\text {cell }}=0$, the value of $\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]$ should be antilog of -