00. Electrode Potential
ELECTROCHEMISTRY

275873 Given below are the half-cell reactions
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}, \mathrm{E}^{\mathrm{o}}=-\mathbf{1 . 1 8 \mathrm { V }}$
$2\left(\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}\right), \mathrm{E}^{0}=+1.51 \mathrm{~V}$
The $\mathrm{E}^{0}$ for $3 \mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}+2 \mathrm{Mn}^{+3}$ will be

1 $-2.69 \mathrm{~V}$, the reaction will not occur
2 $-2.69 \mathrm{~V}$ the reaction will occur
3 $-0.33 \mathrm{~V}$, the reaction will not occur
4 $-0.33 \mathrm{~V}$, the reaction will occur
ELECTROCHEMISTRY

275874 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}(\mathrm{a}=0.1 \mathrm{M}) \ \vert \mathrm{Fe}^{2+}(\mathrm{a}=0.01 \mathrm{M})\right \vert \mathrm{Fe}$. The emf of the above cell is $0.2905 \mathrm{~V}$. Equilibrium constant for the cell reaction is

1 $10^{0.32 / 0.0591}$
2 $10^{0.32 / 0.0295}$
3 $10^{0.26 / 0.0295}$
4 $10^{0.32 / 0.295}$
ELECTROCHEMISTRY

275875 For hydrogen-oxygen fuel cell at $1 \mathrm{~atm}$ and 298 K
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \Delta \mathrm{G}^{\mathrm{o}}=-240 \mathrm{~kJ}$
$E^{0}$ for the cell is approximately, (Given $F=$ $96500 \mathrm{C})$

1 $2.48 \mathrm{~V}$
2 $1.24 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.26 \mathrm{~V}$
ELECTROCHEMISTRY

275876 The change in potential of the half-cell $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$, when aqueous $\mathrm{Cu}^{2+}$ solution is diluted 100 times at $298 \mathrm{~K}$ ? $\left(\frac{2.303 R T}{F}=0.06\right)$

1 increases by $120 \mathrm{mV}$
2 decreases by $120 \mathrm{mV}$
3 increases by $60 \mathrm{mV}$
4 decreases by $60 \mathrm{mV}$
5 no change
ELECTROCHEMISTRY

275873 Given below are the half-cell reactions
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}, \mathrm{E}^{\mathrm{o}}=-\mathbf{1 . 1 8 \mathrm { V }}$
$2\left(\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}\right), \mathrm{E}^{0}=+1.51 \mathrm{~V}$
The $\mathrm{E}^{0}$ for $3 \mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}+2 \mathrm{Mn}^{+3}$ will be

1 $-2.69 \mathrm{~V}$, the reaction will not occur
2 $-2.69 \mathrm{~V}$ the reaction will occur
3 $-0.33 \mathrm{~V}$, the reaction will not occur
4 $-0.33 \mathrm{~V}$, the reaction will occur
ELECTROCHEMISTRY

275874 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}(\mathrm{a}=0.1 \mathrm{M}) \ \vert \mathrm{Fe}^{2+}(\mathrm{a}=0.01 \mathrm{M})\right \vert \mathrm{Fe}$. The emf of the above cell is $0.2905 \mathrm{~V}$. Equilibrium constant for the cell reaction is

1 $10^{0.32 / 0.0591}$
2 $10^{0.32 / 0.0295}$
3 $10^{0.26 / 0.0295}$
4 $10^{0.32 / 0.295}$
ELECTROCHEMISTRY

275875 For hydrogen-oxygen fuel cell at $1 \mathrm{~atm}$ and 298 K
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \Delta \mathrm{G}^{\mathrm{o}}=-240 \mathrm{~kJ}$
$E^{0}$ for the cell is approximately, (Given $F=$ $96500 \mathrm{C})$

1 $2.48 \mathrm{~V}$
2 $1.24 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.26 \mathrm{~V}$
ELECTROCHEMISTRY

275876 The change in potential of the half-cell $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$, when aqueous $\mathrm{Cu}^{2+}$ solution is diluted 100 times at $298 \mathrm{~K}$ ? $\left(\frac{2.303 R T}{F}=0.06\right)$

1 increases by $120 \mathrm{mV}$
2 decreases by $120 \mathrm{mV}$
3 increases by $60 \mathrm{mV}$
4 decreases by $60 \mathrm{mV}$
5 no change
ELECTROCHEMISTRY

275873 Given below are the half-cell reactions
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}, \mathrm{E}^{\mathrm{o}}=-\mathbf{1 . 1 8 \mathrm { V }}$
$2\left(\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}\right), \mathrm{E}^{0}=+1.51 \mathrm{~V}$
The $\mathrm{E}^{0}$ for $3 \mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}+2 \mathrm{Mn}^{+3}$ will be

1 $-2.69 \mathrm{~V}$, the reaction will not occur
2 $-2.69 \mathrm{~V}$ the reaction will occur
3 $-0.33 \mathrm{~V}$, the reaction will not occur
4 $-0.33 \mathrm{~V}$, the reaction will occur
ELECTROCHEMISTRY

275874 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}(\mathrm{a}=0.1 \mathrm{M}) \ \vert \mathrm{Fe}^{2+}(\mathrm{a}=0.01 \mathrm{M})\right \vert \mathrm{Fe}$. The emf of the above cell is $0.2905 \mathrm{~V}$. Equilibrium constant for the cell reaction is

1 $10^{0.32 / 0.0591}$
2 $10^{0.32 / 0.0295}$
3 $10^{0.26 / 0.0295}$
4 $10^{0.32 / 0.295}$
ELECTROCHEMISTRY

275875 For hydrogen-oxygen fuel cell at $1 \mathrm{~atm}$ and 298 K
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \Delta \mathrm{G}^{\mathrm{o}}=-240 \mathrm{~kJ}$
$E^{0}$ for the cell is approximately, (Given $F=$ $96500 \mathrm{C})$

1 $2.48 \mathrm{~V}$
2 $1.24 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.26 \mathrm{~V}$
ELECTROCHEMISTRY

275876 The change in potential of the half-cell $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$, when aqueous $\mathrm{Cu}^{2+}$ solution is diluted 100 times at $298 \mathrm{~K}$ ? $\left(\frac{2.303 R T}{F}=0.06\right)$

1 increases by $120 \mathrm{mV}$
2 decreases by $120 \mathrm{mV}$
3 increases by $60 \mathrm{mV}$
4 decreases by $60 \mathrm{mV}$
5 no change
ELECTROCHEMISTRY

275873 Given below are the half-cell reactions
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}, \mathrm{E}^{\mathrm{o}}=-\mathbf{1 . 1 8 \mathrm { V }}$
$2\left(\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}\right), \mathrm{E}^{0}=+1.51 \mathrm{~V}$
The $\mathrm{E}^{0}$ for $3 \mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}+2 \mathrm{Mn}^{+3}$ will be

1 $-2.69 \mathrm{~V}$, the reaction will not occur
2 $-2.69 \mathrm{~V}$ the reaction will occur
3 $-0.33 \mathrm{~V}$, the reaction will not occur
4 $-0.33 \mathrm{~V}$, the reaction will occur
ELECTROCHEMISTRY

275874 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}(\mathrm{a}=0.1 \mathrm{M}) \ \vert \mathrm{Fe}^{2+}(\mathrm{a}=0.01 \mathrm{M})\right \vert \mathrm{Fe}$. The emf of the above cell is $0.2905 \mathrm{~V}$. Equilibrium constant for the cell reaction is

1 $10^{0.32 / 0.0591}$
2 $10^{0.32 / 0.0295}$
3 $10^{0.26 / 0.0295}$
4 $10^{0.32 / 0.295}$
ELECTROCHEMISTRY

275875 For hydrogen-oxygen fuel cell at $1 \mathrm{~atm}$ and 298 K
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \Delta \mathrm{G}^{\mathrm{o}}=-240 \mathrm{~kJ}$
$E^{0}$ for the cell is approximately, (Given $F=$ $96500 \mathrm{C})$

1 $2.48 \mathrm{~V}$
2 $1.24 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.26 \mathrm{~V}$
ELECTROCHEMISTRY

275876 The change in potential of the half-cell $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$, when aqueous $\mathrm{Cu}^{2+}$ solution is diluted 100 times at $298 \mathrm{~K}$ ? $\left(\frac{2.303 R T}{F}=0.06\right)$

1 increases by $120 \mathrm{mV}$
2 decreases by $120 \mathrm{mV}$
3 increases by $60 \mathrm{mV}$
4 decreases by $60 \mathrm{mV}$
5 no change