275857
The EMF of a galvanic cell by coupling two electrodes $M_{1}\left \vertM_{1}^{2+}(0.1 M)\right \vert\left \vertM_{2}^{2+}(0.01 M)\right \vert M_{2}$ is $+1.47 \mathrm{~V}$. if the $\mathrm{E}^{\circ}$ value (reduction potential) of $M_{2}$ electrode is $0.9 \mathrm{~V}, E^{\circ}$ (reduction potential) value of $M_{1}$ electrode in volts would be
[Assume $\frac{2.303 R T(T=298 K)}{F}=0.06$ ]
275851
In the cell represented by
$\begin{aligned}
& \mathbf{P b}(\mathbf{s})\left \vert\mathbf{P b}^{2+}(\mathbf{1 M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}(\mathrm{s}) \\
& \text { reducing agent is } \\
& \begin{array}{ll}
\text { (a) } \mathrm{Pb} & \text { (b) } \mathrm{Pb}^{2+} \\
\text { (c) } \mathrm{Ag} & \text { (d) } \mathrm{Ag}^{+}
\end{array}
\end{aligned}$
275857
The EMF of a galvanic cell by coupling two electrodes $M_{1}\left \vertM_{1}^{2+}(0.1 M)\right \vert\left \vertM_{2}^{2+}(0.01 M)\right \vert M_{2}$ is $+1.47 \mathrm{~V}$. if the $\mathrm{E}^{\circ}$ value (reduction potential) of $M_{2}$ electrode is $0.9 \mathrm{~V}, E^{\circ}$ (reduction potential) value of $M_{1}$ electrode in volts would be
[Assume $\frac{2.303 R T(T=298 K)}{F}=0.06$ ]
275851
In the cell represented by
$\begin{aligned}
& \mathbf{P b}(\mathbf{s})\left \vert\mathbf{P b}^{2+}(\mathbf{1 M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}(\mathrm{s}) \\
& \text { reducing agent is } \\
& \begin{array}{ll}
\text { (a) } \mathrm{Pb} & \text { (b) } \mathrm{Pb}^{2+} \\
\text { (c) } \mathrm{Ag} & \text { (d) } \mathrm{Ag}^{+}
\end{array}
\end{aligned}$
275857
The EMF of a galvanic cell by coupling two electrodes $M_{1}\left \vertM_{1}^{2+}(0.1 M)\right \vert\left \vertM_{2}^{2+}(0.01 M)\right \vert M_{2}$ is $+1.47 \mathrm{~V}$. if the $\mathrm{E}^{\circ}$ value (reduction potential) of $M_{2}$ electrode is $0.9 \mathrm{~V}, E^{\circ}$ (reduction potential) value of $M_{1}$ electrode in volts would be
[Assume $\frac{2.303 R T(T=298 K)}{F}=0.06$ ]
275851
In the cell represented by
$\begin{aligned}
& \mathbf{P b}(\mathbf{s})\left \vert\mathbf{P b}^{2+}(\mathbf{1 M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}(\mathrm{s}) \\
& \text { reducing agent is } \\
& \begin{array}{ll}
\text { (a) } \mathrm{Pb} & \text { (b) } \mathrm{Pb}^{2+} \\
\text { (c) } \mathrm{Ag} & \text { (d) } \mathrm{Ag}^{+}
\end{array}
\end{aligned}$
275857
The EMF of a galvanic cell by coupling two electrodes $M_{1}\left \vertM_{1}^{2+}(0.1 M)\right \vert\left \vertM_{2}^{2+}(0.01 M)\right \vert M_{2}$ is $+1.47 \mathrm{~V}$. if the $\mathrm{E}^{\circ}$ value (reduction potential) of $M_{2}$ electrode is $0.9 \mathrm{~V}, E^{\circ}$ (reduction potential) value of $M_{1}$ electrode in volts would be
[Assume $\frac{2.303 R T(T=298 K)}{F}=0.06$ ]
275851
In the cell represented by
$\begin{aligned}
& \mathbf{P b}(\mathbf{s})\left \vert\mathbf{P b}^{2+}(\mathbf{1 M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}(\mathrm{s}) \\
& \text { reducing agent is } \\
& \begin{array}{ll}
\text { (a) } \mathrm{Pb} & \text { (b) } \mathrm{Pb}^{2+} \\
\text { (c) } \mathrm{Ag} & \text { (d) } \mathrm{Ag}^{+}
\end{array}
\end{aligned}$