00. Electrode Potential
ELECTROCHEMISTRY

275953 Standard free energies or formation (in $\mathrm{kJ} /$ mol) at $298 \mathrm{~K}$ are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane(g) respectively. The value of $\mathbf{E}^{0}{ }_{\text {Cell }}$ for the pentane-oxygen fuel cell is

1 $1.0968 \mathrm{~V}$
2 $0.0968 \mathrm{~V}$
3 $1.968 \mathrm{~V}$
4 $2.0968 \mathrm{~V}$
ELECTROCHEMISTRY

275954 What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reduction potential of $\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ )

1 $-0.28 \mathrm{~V}$
2 $-0.34 \mathrm{~V}$
3 $-0.82 \mathrm{~V}$
4 $-0.22 \mathrm{~V}$
ELECTROCHEMISTRY

275955 The potential of the following cell is 0.34 volt at $25^{\circ} \mathrm{C}$. Calculate the standard reduction potential of the Copper half cell.
$\mathbf{P t}\left \vert\mathbf{H}_{2}(\mathbf{1 a t m}) \ \vert \mathbf{C u}^{2+}(\mathbf{1 M})\right \vert \mathbf{C u}$

1 +0.34 volt
2 -0.34 volt
3 +3.4 volt
4 -3.4 volt
ELECTROCHEMISTRY

275956 The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$ respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-life is

1 $0.184 \mathrm{~V}$
2 $0.827 \mathrm{~V}$
3 $0.521 \mathrm{~V}$
4 $0.490 \mathrm{~V}$.
ELECTROCHEMISTRY

275957 For a cell reaction involving two electron change, the standard EMF of the cell is $0.295 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be

1 $29.5 \times 10^{-2}$
2 10
3 $1 \times 10^{10}$
4 $2.95 \times 10^{-10}$
ELECTROCHEMISTRY

275953 Standard free energies or formation (in $\mathrm{kJ} /$ mol) at $298 \mathrm{~K}$ are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane(g) respectively. The value of $\mathbf{E}^{0}{ }_{\text {Cell }}$ for the pentane-oxygen fuel cell is

1 $1.0968 \mathrm{~V}$
2 $0.0968 \mathrm{~V}$
3 $1.968 \mathrm{~V}$
4 $2.0968 \mathrm{~V}$
ELECTROCHEMISTRY

275954 What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reduction potential of $\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ )

1 $-0.28 \mathrm{~V}$
2 $-0.34 \mathrm{~V}$
3 $-0.82 \mathrm{~V}$
4 $-0.22 \mathrm{~V}$
ELECTROCHEMISTRY

275955 The potential of the following cell is 0.34 volt at $25^{\circ} \mathrm{C}$. Calculate the standard reduction potential of the Copper half cell.
$\mathbf{P t}\left \vert\mathbf{H}_{2}(\mathbf{1 a t m}) \ \vert \mathbf{C u}^{2+}(\mathbf{1 M})\right \vert \mathbf{C u}$

1 +0.34 volt
2 -0.34 volt
3 +3.4 volt
4 -3.4 volt
ELECTROCHEMISTRY

275956 The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$ respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-life is

1 $0.184 \mathrm{~V}$
2 $0.827 \mathrm{~V}$
3 $0.521 \mathrm{~V}$
4 $0.490 \mathrm{~V}$.
ELECTROCHEMISTRY

275957 For a cell reaction involving two electron change, the standard EMF of the cell is $0.295 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be

1 $29.5 \times 10^{-2}$
2 10
3 $1 \times 10^{10}$
4 $2.95 \times 10^{-10}$
ELECTROCHEMISTRY

275953 Standard free energies or formation (in $\mathrm{kJ} /$ mol) at $298 \mathrm{~K}$ are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane(g) respectively. The value of $\mathbf{E}^{0}{ }_{\text {Cell }}$ for the pentane-oxygen fuel cell is

1 $1.0968 \mathrm{~V}$
2 $0.0968 \mathrm{~V}$
3 $1.968 \mathrm{~V}$
4 $2.0968 \mathrm{~V}$
ELECTROCHEMISTRY

275954 What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reduction potential of $\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ )

1 $-0.28 \mathrm{~V}$
2 $-0.34 \mathrm{~V}$
3 $-0.82 \mathrm{~V}$
4 $-0.22 \mathrm{~V}$
ELECTROCHEMISTRY

275955 The potential of the following cell is 0.34 volt at $25^{\circ} \mathrm{C}$. Calculate the standard reduction potential of the Copper half cell.
$\mathbf{P t}\left \vert\mathbf{H}_{2}(\mathbf{1 a t m}) \ \vert \mathbf{C u}^{2+}(\mathbf{1 M})\right \vert \mathbf{C u}$

1 +0.34 volt
2 -0.34 volt
3 +3.4 volt
4 -3.4 volt
ELECTROCHEMISTRY

275956 The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$ respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-life is

1 $0.184 \mathrm{~V}$
2 $0.827 \mathrm{~V}$
3 $0.521 \mathrm{~V}$
4 $0.490 \mathrm{~V}$.
ELECTROCHEMISTRY

275957 For a cell reaction involving two electron change, the standard EMF of the cell is $0.295 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be

1 $29.5 \times 10^{-2}$
2 10
3 $1 \times 10^{10}$
4 $2.95 \times 10^{-10}$
ELECTROCHEMISTRY

275953 Standard free energies or formation (in $\mathrm{kJ} /$ mol) at $298 \mathrm{~K}$ are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane(g) respectively. The value of $\mathbf{E}^{0}{ }_{\text {Cell }}$ for the pentane-oxygen fuel cell is

1 $1.0968 \mathrm{~V}$
2 $0.0968 \mathrm{~V}$
3 $1.968 \mathrm{~V}$
4 $2.0968 \mathrm{~V}$
ELECTROCHEMISTRY

275954 What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reduction potential of $\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ )

1 $-0.28 \mathrm{~V}$
2 $-0.34 \mathrm{~V}$
3 $-0.82 \mathrm{~V}$
4 $-0.22 \mathrm{~V}$
ELECTROCHEMISTRY

275955 The potential of the following cell is 0.34 volt at $25^{\circ} \mathrm{C}$. Calculate the standard reduction potential of the Copper half cell.
$\mathbf{P t}\left \vert\mathbf{H}_{2}(\mathbf{1 a t m}) \ \vert \mathbf{C u}^{2+}(\mathbf{1 M})\right \vert \mathbf{C u}$

1 +0.34 volt
2 -0.34 volt
3 +3.4 volt
4 -3.4 volt
ELECTROCHEMISTRY

275956 The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$ respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-life is

1 $0.184 \mathrm{~V}$
2 $0.827 \mathrm{~V}$
3 $0.521 \mathrm{~V}$
4 $0.490 \mathrm{~V}$.
ELECTROCHEMISTRY

275957 For a cell reaction involving two electron change, the standard EMF of the cell is $0.295 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be

1 $29.5 \times 10^{-2}$
2 10
3 $1 \times 10^{10}$
4 $2.95 \times 10^{-10}$
ELECTROCHEMISTRY

275953 Standard free energies or formation (in $\mathrm{kJ} /$ mol) at $298 \mathrm{~K}$ are $-237.2,-394.4$ and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane(g) respectively. The value of $\mathbf{E}^{0}{ }_{\text {Cell }}$ for the pentane-oxygen fuel cell is

1 $1.0968 \mathrm{~V}$
2 $0.0968 \mathrm{~V}$
3 $1.968 \mathrm{~V}$
4 $2.0968 \mathrm{~V}$
ELECTROCHEMISTRY

275954 What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reduction potential of $\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ )

1 $-0.28 \mathrm{~V}$
2 $-0.34 \mathrm{~V}$
3 $-0.82 \mathrm{~V}$
4 $-0.22 \mathrm{~V}$
ELECTROCHEMISTRY

275955 The potential of the following cell is 0.34 volt at $25^{\circ} \mathrm{C}$. Calculate the standard reduction potential of the Copper half cell.
$\mathbf{P t}\left \vert\mathbf{H}_{2}(\mathbf{1 a t m}) \ \vert \mathbf{C u}^{2+}(\mathbf{1 M})\right \vert \mathbf{C u}$

1 +0.34 volt
2 -0.34 volt
3 +3.4 volt
4 -3.4 volt
ELECTROCHEMISTRY

275956 The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$ respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-life is

1 $0.184 \mathrm{~V}$
2 $0.827 \mathrm{~V}$
3 $0.521 \mathrm{~V}$
4 $0.490 \mathrm{~V}$.
ELECTROCHEMISTRY

275957 For a cell reaction involving two electron change, the standard EMF of the cell is $0.295 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be

1 $29.5 \times 10^{-2}$
2 10
3 $1 \times 10^{10}$
4 $2.95 \times 10^{-10}$