03. Osmosis and Osmotic Pressure of the Solution
SOLUTIONS

277464 Calculate the osmotic pressure of $0.01 \mathrm{M}$ solution of cane sugar at $300 \mathrm{~K}$
$\left(\mathrm{R}=\mathbf{0 . 0 8 2 1 2}\right.$ atm degree $\left.{ }^{-1} \mathrm{~mol}^{-1}\right)$

1 $0.3568 \mathrm{~atm}$
2 $0.2463 \mathrm{~atm}$
3 $0.1562 \mathrm{~atm}$
4 $0.5623 \mathrm{~atm}$
SOLUTIONS

277439 Which one is not correct mathematical equation for Dalton's law of partial pressure? Here $p=$ total pressure of gaseous mixture.

1 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{\mathrm{o}}$, where $\mathrm{x}_{\mathrm{i}}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture $p_{i}^{o}=$ pressure of $i^{\text {th }}$ gas in pure state
2 $\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
3 $\mathrm{p}=\mathrm{n}_{1} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \frac{\mathrm{RT}}{\mathrm{V}}$
4 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}$, where $\mathrm{pi}=$ partial pressure of $\mathrm{i}^{\text {th }}$ gas $\mathrm{xi}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture
SOLUTIONS

277443 The osmotic pressure of a $5 \%$ (wt./vol) solution of cane sugar at $150^{\circ} \mathrm{C}$ is

1 $3.078 \mathrm{~atm}$
2 $4.078 \mathrm{~atm}$
3 $5.078 \mathrm{~atm}$
4 $2.45 \mathrm{~atm}$
SOLUTIONS

277444 A $3 \mathrm{~mL}$ of solution was made by dissolving 20 mg of protein at $0^{0} \mathrm{C}$. The osmotic pressure of the resulting solution is 3.8 torr. The molecular weight of the protein is approximately (in g/mol)

1 300
2 $3 \times 10^{5}$
3 $3 \times 10^{4}$
4 $3 \times 10^{3}$
SOLUTIONS

277445 $\mathrm{pH}$ of a $0.1 \mathrm{M}$ monobasic acid is 2. Its osmotic pressure at a given temperature $T(K)$ is (Given that the effective concentration for osmotic pressure is $(1+\alpha) \cdot x$ concentration of acid: $\alpha$ is the dissociation factor)

1 RT
2 $0.11 \mathrm{RT}$
3 $0.01 \mathrm{RT}$
4 0.001RT
SOLUTIONS

277464 Calculate the osmotic pressure of $0.01 \mathrm{M}$ solution of cane sugar at $300 \mathrm{~K}$
$\left(\mathrm{R}=\mathbf{0 . 0 8 2 1 2}\right.$ atm degree $\left.{ }^{-1} \mathrm{~mol}^{-1}\right)$

1 $0.3568 \mathrm{~atm}$
2 $0.2463 \mathrm{~atm}$
3 $0.1562 \mathrm{~atm}$
4 $0.5623 \mathrm{~atm}$
SOLUTIONS

277439 Which one is not correct mathematical equation for Dalton's law of partial pressure? Here $p=$ total pressure of gaseous mixture.

1 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{\mathrm{o}}$, where $\mathrm{x}_{\mathrm{i}}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture $p_{i}^{o}=$ pressure of $i^{\text {th }}$ gas in pure state
2 $\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
3 $\mathrm{p}=\mathrm{n}_{1} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \frac{\mathrm{RT}}{\mathrm{V}}$
4 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}$, where $\mathrm{pi}=$ partial pressure of $\mathrm{i}^{\text {th }}$ gas $\mathrm{xi}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture
SOLUTIONS

277443 The osmotic pressure of a $5 \%$ (wt./vol) solution of cane sugar at $150^{\circ} \mathrm{C}$ is

1 $3.078 \mathrm{~atm}$
2 $4.078 \mathrm{~atm}$
3 $5.078 \mathrm{~atm}$
4 $2.45 \mathrm{~atm}$
SOLUTIONS

277444 A $3 \mathrm{~mL}$ of solution was made by dissolving 20 mg of protein at $0^{0} \mathrm{C}$. The osmotic pressure of the resulting solution is 3.8 torr. The molecular weight of the protein is approximately (in g/mol)

1 300
2 $3 \times 10^{5}$
3 $3 \times 10^{4}$
4 $3 \times 10^{3}$
SOLUTIONS

277445 $\mathrm{pH}$ of a $0.1 \mathrm{M}$ monobasic acid is 2. Its osmotic pressure at a given temperature $T(K)$ is (Given that the effective concentration for osmotic pressure is $(1+\alpha) \cdot x$ concentration of acid: $\alpha$ is the dissociation factor)

1 RT
2 $0.11 \mathrm{RT}$
3 $0.01 \mathrm{RT}$
4 0.001RT
SOLUTIONS

277464 Calculate the osmotic pressure of $0.01 \mathrm{M}$ solution of cane sugar at $300 \mathrm{~K}$
$\left(\mathrm{R}=\mathbf{0 . 0 8 2 1 2}\right.$ atm degree $\left.{ }^{-1} \mathrm{~mol}^{-1}\right)$

1 $0.3568 \mathrm{~atm}$
2 $0.2463 \mathrm{~atm}$
3 $0.1562 \mathrm{~atm}$
4 $0.5623 \mathrm{~atm}$
SOLUTIONS

277439 Which one is not correct mathematical equation for Dalton's law of partial pressure? Here $p=$ total pressure of gaseous mixture.

1 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{\mathrm{o}}$, where $\mathrm{x}_{\mathrm{i}}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture $p_{i}^{o}=$ pressure of $i^{\text {th }}$ gas in pure state
2 $\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
3 $\mathrm{p}=\mathrm{n}_{1} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \frac{\mathrm{RT}}{\mathrm{V}}$
4 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}$, where $\mathrm{pi}=$ partial pressure of $\mathrm{i}^{\text {th }}$ gas $\mathrm{xi}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture
SOLUTIONS

277443 The osmotic pressure of a $5 \%$ (wt./vol) solution of cane sugar at $150^{\circ} \mathrm{C}$ is

1 $3.078 \mathrm{~atm}$
2 $4.078 \mathrm{~atm}$
3 $5.078 \mathrm{~atm}$
4 $2.45 \mathrm{~atm}$
SOLUTIONS

277444 A $3 \mathrm{~mL}$ of solution was made by dissolving 20 mg of protein at $0^{0} \mathrm{C}$. The osmotic pressure of the resulting solution is 3.8 torr. The molecular weight of the protein is approximately (in g/mol)

1 300
2 $3 \times 10^{5}$
3 $3 \times 10^{4}$
4 $3 \times 10^{3}$
SOLUTIONS

277445 $\mathrm{pH}$ of a $0.1 \mathrm{M}$ monobasic acid is 2. Its osmotic pressure at a given temperature $T(K)$ is (Given that the effective concentration for osmotic pressure is $(1+\alpha) \cdot x$ concentration of acid: $\alpha$ is the dissociation factor)

1 RT
2 $0.11 \mathrm{RT}$
3 $0.01 \mathrm{RT}$
4 0.001RT
SOLUTIONS

277464 Calculate the osmotic pressure of $0.01 \mathrm{M}$ solution of cane sugar at $300 \mathrm{~K}$
$\left(\mathrm{R}=\mathbf{0 . 0 8 2 1 2}\right.$ atm degree $\left.{ }^{-1} \mathrm{~mol}^{-1}\right)$

1 $0.3568 \mathrm{~atm}$
2 $0.2463 \mathrm{~atm}$
3 $0.1562 \mathrm{~atm}$
4 $0.5623 \mathrm{~atm}$
SOLUTIONS

277439 Which one is not correct mathematical equation for Dalton's law of partial pressure? Here $p=$ total pressure of gaseous mixture.

1 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{\mathrm{o}}$, where $\mathrm{x}_{\mathrm{i}}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture $p_{i}^{o}=$ pressure of $i^{\text {th }}$ gas in pure state
2 $\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
3 $\mathrm{p}=\mathrm{n}_{1} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \frac{\mathrm{RT}}{\mathrm{V}}$
4 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}$, where $\mathrm{pi}=$ partial pressure of $\mathrm{i}^{\text {th }}$ gas $\mathrm{xi}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture
SOLUTIONS

277443 The osmotic pressure of a $5 \%$ (wt./vol) solution of cane sugar at $150^{\circ} \mathrm{C}$ is

1 $3.078 \mathrm{~atm}$
2 $4.078 \mathrm{~atm}$
3 $5.078 \mathrm{~atm}$
4 $2.45 \mathrm{~atm}$
SOLUTIONS

277444 A $3 \mathrm{~mL}$ of solution was made by dissolving 20 mg of protein at $0^{0} \mathrm{C}$. The osmotic pressure of the resulting solution is 3.8 torr. The molecular weight of the protein is approximately (in g/mol)

1 300
2 $3 \times 10^{5}$
3 $3 \times 10^{4}$
4 $3 \times 10^{3}$
SOLUTIONS

277445 $\mathrm{pH}$ of a $0.1 \mathrm{M}$ monobasic acid is 2. Its osmotic pressure at a given temperature $T(K)$ is (Given that the effective concentration for osmotic pressure is $(1+\alpha) \cdot x$ concentration of acid: $\alpha$ is the dissociation factor)

1 RT
2 $0.11 \mathrm{RT}$
3 $0.01 \mathrm{RT}$
4 0.001RT
SOLUTIONS

277464 Calculate the osmotic pressure of $0.01 \mathrm{M}$ solution of cane sugar at $300 \mathrm{~K}$
$\left(\mathrm{R}=\mathbf{0 . 0 8 2 1 2}\right.$ atm degree $\left.{ }^{-1} \mathrm{~mol}^{-1}\right)$

1 $0.3568 \mathrm{~atm}$
2 $0.2463 \mathrm{~atm}$
3 $0.1562 \mathrm{~atm}$
4 $0.5623 \mathrm{~atm}$
SOLUTIONS

277439 Which one is not correct mathematical equation for Dalton's law of partial pressure? Here $p=$ total pressure of gaseous mixture.

1 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{\mathrm{o}}$, where $\mathrm{x}_{\mathrm{i}}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture $p_{i}^{o}=$ pressure of $i^{\text {th }}$ gas in pure state
2 $\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
3 $\mathrm{p}=\mathrm{n}_{1} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \frac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \frac{\mathrm{RT}}{\mathrm{V}}$
4 $\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}$, where $\mathrm{pi}=$ partial pressure of $\mathrm{i}^{\text {th }}$ gas $\mathrm{xi}=$ mole fraction of $\mathrm{i}^{\text {th }}$ gas in gaseous mixture
SOLUTIONS

277443 The osmotic pressure of a $5 \%$ (wt./vol) solution of cane sugar at $150^{\circ} \mathrm{C}$ is

1 $3.078 \mathrm{~atm}$
2 $4.078 \mathrm{~atm}$
3 $5.078 \mathrm{~atm}$
4 $2.45 \mathrm{~atm}$
SOLUTIONS

277444 A $3 \mathrm{~mL}$ of solution was made by dissolving 20 mg of protein at $0^{0} \mathrm{C}$. The osmotic pressure of the resulting solution is 3.8 torr. The molecular weight of the protein is approximately (in g/mol)

1 300
2 $3 \times 10^{5}$
3 $3 \times 10^{4}$
4 $3 \times 10^{3}$
SOLUTIONS

277445 $\mathrm{pH}$ of a $0.1 \mathrm{M}$ monobasic acid is 2. Its osmotic pressure at a given temperature $T(K)$ is (Given that the effective concentration for osmotic pressure is $(1+\alpha) \cdot x$ concentration of acid: $\alpha$ is the dissociation factor)

1 RT
2 $0.11 \mathrm{RT}$
3 $0.01 \mathrm{RT}$
4 0.001RT