230043
Equal volumes of three acid solutions of \(\mathrm{pH}_3 3,4\) and 5 are mixed in a vessel. What will be \(\mathrm{H}^{+}\)ion concentration in the mixture ?
1 \(3.7 \times 10^{-3} \mathrm{M}\)
2 \(1.11 \times 10^{-3} \mathrm{M}\)
3 \(1.11 \times 10^{-4} \mathrm{M}\)
4 \(3.7 \times 10^{-4} \mathrm{M}\)
Explanation:
We know that, \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\) Given, \(\left[\mathrm{H}^{+}\right]\)of soln. \(1=10^{-3}\) \(\left[\mathrm{H}^{+}\right]\)of soln. \(2=10^{-4},\left[\mathrm{H}^{+}\right]\)of soln. \(3=10^{-5}\) Total concentration of \[ \begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3}\left(1+1 \times 10^{-1}+1 \times 10^{-2}\right)} \\ & 10^{-3}\left(\frac{1}{1}+\frac{1}{10}+\frac{1}{100}\right) \Rightarrow 10^{-3}\left(\frac{10+10+1}{100}\right) \\ & =1.11 \times 10^{-3} \end{aligned} \] So, \(\mathrm{H}^{+}\)ion concentration in mixture of equal volume of these acid solution. \[ =\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} \mathrm{M} \]
NEET-2008
Ionic Equilibrium
230033
Which pair of the following will not show common ion effect?
Common ion effect is shown when weak electrolyte and strong electrolyte is mixed. \(\mathrm{H}_2 \mathrm{~S}+\mathrm{HNO}_3\) not shown common ion effect because these are not weak and strong electrolyte. Rest of all are weak and strong electrolyte hence they shows common ion effect.
CG PET-22.05.2022
Ionic Equilibrium
230036
The common ion effect is shown by which one of the following set solution
\(\mathrm{NH}_4 \mathrm{OH}+\mathrm{NH}_4 \mathrm{Cl}\) shows common ion effect \(\mathrm{NH}_4 \mathrm{OH}\) is a weak base and undergoes ionisation to a limited extent as follows: \(\mathrm{NH}_4 \mathrm{OH}\) 时 \(\mathrm{NH}_4^{+}+\mathrm{OH}^{-}\) \(\mathrm{NH}_4 \mathrm{Cl}\) is strong electrolyte \(\mathrm{NH}_4 \mathrm{Cl} \longrightarrow \mathrm{NH}_4^{+}+\mathrm{Cl}^{-}\) Due to the addition of \(\mathrm{NH}_4 \mathrm{Cl}\), the conc. of \(\mathrm{NH}_4{ }^{+}\)ion in \(\mathrm{NH}_2 \mathrm{OH}\) solution increases and equilibrium shift towords left. So, due to \(\mathrm{NH}_4{ }^{+}\)(common ion) dissociation of \(\mathrm{NH}_4 \mathrm{OH}\) is suppressed.
AMU-2001
Ionic Equilibrium
230040
Correct relation between dissociation constant of a dibasic acid is
(ii) \(\mathrm{HA}^{-}\)目被 \(\mathrm{A}^{2-}+\mathrm{H}^{+}\) In the \(1^{\text {st }}\) step \(\mathrm{H}^{+}\)ion comes from neutral molecule, while in the \(2^{\text {nd }}\) step the \(\mathrm{H}^{+}\)ion comes from negatively charged ions. The presence of -ve charge makes the removal of \(\mathrm{H}^{+}\) ion difficult Thus \(\mathrm{K}_{\mathrm{a}_1}>\mathrm{K}_{\mathrm{a}_2}\)
230043
Equal volumes of three acid solutions of \(\mathrm{pH}_3 3,4\) and 5 are mixed in a vessel. What will be \(\mathrm{H}^{+}\)ion concentration in the mixture ?
1 \(3.7 \times 10^{-3} \mathrm{M}\)
2 \(1.11 \times 10^{-3} \mathrm{M}\)
3 \(1.11 \times 10^{-4} \mathrm{M}\)
4 \(3.7 \times 10^{-4} \mathrm{M}\)
Explanation:
We know that, \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\) Given, \(\left[\mathrm{H}^{+}\right]\)of soln. \(1=10^{-3}\) \(\left[\mathrm{H}^{+}\right]\)of soln. \(2=10^{-4},\left[\mathrm{H}^{+}\right]\)of soln. \(3=10^{-5}\) Total concentration of \[ \begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3}\left(1+1 \times 10^{-1}+1 \times 10^{-2}\right)} \\ & 10^{-3}\left(\frac{1}{1}+\frac{1}{10}+\frac{1}{100}\right) \Rightarrow 10^{-3}\left(\frac{10+10+1}{100}\right) \\ & =1.11 \times 10^{-3} \end{aligned} \] So, \(\mathrm{H}^{+}\)ion concentration in mixture of equal volume of these acid solution. \[ =\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} \mathrm{M} \]
NEET-2008
Ionic Equilibrium
230033
Which pair of the following will not show common ion effect?
Common ion effect is shown when weak electrolyte and strong electrolyte is mixed. \(\mathrm{H}_2 \mathrm{~S}+\mathrm{HNO}_3\) not shown common ion effect because these are not weak and strong electrolyte. Rest of all are weak and strong electrolyte hence they shows common ion effect.
CG PET-22.05.2022
Ionic Equilibrium
230036
The common ion effect is shown by which one of the following set solution
\(\mathrm{NH}_4 \mathrm{OH}+\mathrm{NH}_4 \mathrm{Cl}\) shows common ion effect \(\mathrm{NH}_4 \mathrm{OH}\) is a weak base and undergoes ionisation to a limited extent as follows: \(\mathrm{NH}_4 \mathrm{OH}\) 时 \(\mathrm{NH}_4^{+}+\mathrm{OH}^{-}\) \(\mathrm{NH}_4 \mathrm{Cl}\) is strong electrolyte \(\mathrm{NH}_4 \mathrm{Cl} \longrightarrow \mathrm{NH}_4^{+}+\mathrm{Cl}^{-}\) Due to the addition of \(\mathrm{NH}_4 \mathrm{Cl}\), the conc. of \(\mathrm{NH}_4{ }^{+}\)ion in \(\mathrm{NH}_2 \mathrm{OH}\) solution increases and equilibrium shift towords left. So, due to \(\mathrm{NH}_4{ }^{+}\)(common ion) dissociation of \(\mathrm{NH}_4 \mathrm{OH}\) is suppressed.
AMU-2001
Ionic Equilibrium
230040
Correct relation between dissociation constant of a dibasic acid is
(ii) \(\mathrm{HA}^{-}\)目被 \(\mathrm{A}^{2-}+\mathrm{H}^{+}\) In the \(1^{\text {st }}\) step \(\mathrm{H}^{+}\)ion comes from neutral molecule, while in the \(2^{\text {nd }}\) step the \(\mathrm{H}^{+}\)ion comes from negatively charged ions. The presence of -ve charge makes the removal of \(\mathrm{H}^{+}\) ion difficult Thus \(\mathrm{K}_{\mathrm{a}_1}>\mathrm{K}_{\mathrm{a}_2}\)
230043
Equal volumes of three acid solutions of \(\mathrm{pH}_3 3,4\) and 5 are mixed in a vessel. What will be \(\mathrm{H}^{+}\)ion concentration in the mixture ?
1 \(3.7 \times 10^{-3} \mathrm{M}\)
2 \(1.11 \times 10^{-3} \mathrm{M}\)
3 \(1.11 \times 10^{-4} \mathrm{M}\)
4 \(3.7 \times 10^{-4} \mathrm{M}\)
Explanation:
We know that, \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\) Given, \(\left[\mathrm{H}^{+}\right]\)of soln. \(1=10^{-3}\) \(\left[\mathrm{H}^{+}\right]\)of soln. \(2=10^{-4},\left[\mathrm{H}^{+}\right]\)of soln. \(3=10^{-5}\) Total concentration of \[ \begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3}\left(1+1 \times 10^{-1}+1 \times 10^{-2}\right)} \\ & 10^{-3}\left(\frac{1}{1}+\frac{1}{10}+\frac{1}{100}\right) \Rightarrow 10^{-3}\left(\frac{10+10+1}{100}\right) \\ & =1.11 \times 10^{-3} \end{aligned} \] So, \(\mathrm{H}^{+}\)ion concentration in mixture of equal volume of these acid solution. \[ =\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} \mathrm{M} \]
NEET-2008
Ionic Equilibrium
230033
Which pair of the following will not show common ion effect?
Common ion effect is shown when weak electrolyte and strong electrolyte is mixed. \(\mathrm{H}_2 \mathrm{~S}+\mathrm{HNO}_3\) not shown common ion effect because these are not weak and strong electrolyte. Rest of all are weak and strong electrolyte hence they shows common ion effect.
CG PET-22.05.2022
Ionic Equilibrium
230036
The common ion effect is shown by which one of the following set solution
\(\mathrm{NH}_4 \mathrm{OH}+\mathrm{NH}_4 \mathrm{Cl}\) shows common ion effect \(\mathrm{NH}_4 \mathrm{OH}\) is a weak base and undergoes ionisation to a limited extent as follows: \(\mathrm{NH}_4 \mathrm{OH}\) 时 \(\mathrm{NH}_4^{+}+\mathrm{OH}^{-}\) \(\mathrm{NH}_4 \mathrm{Cl}\) is strong electrolyte \(\mathrm{NH}_4 \mathrm{Cl} \longrightarrow \mathrm{NH}_4^{+}+\mathrm{Cl}^{-}\) Due to the addition of \(\mathrm{NH}_4 \mathrm{Cl}\), the conc. of \(\mathrm{NH}_4{ }^{+}\)ion in \(\mathrm{NH}_2 \mathrm{OH}\) solution increases and equilibrium shift towords left. So, due to \(\mathrm{NH}_4{ }^{+}\)(common ion) dissociation of \(\mathrm{NH}_4 \mathrm{OH}\) is suppressed.
AMU-2001
Ionic Equilibrium
230040
Correct relation between dissociation constant of a dibasic acid is
(ii) \(\mathrm{HA}^{-}\)目被 \(\mathrm{A}^{2-}+\mathrm{H}^{+}\) In the \(1^{\text {st }}\) step \(\mathrm{H}^{+}\)ion comes from neutral molecule, while in the \(2^{\text {nd }}\) step the \(\mathrm{H}^{+}\)ion comes from negatively charged ions. The presence of -ve charge makes the removal of \(\mathrm{H}^{+}\) ion difficult Thus \(\mathrm{K}_{\mathrm{a}_1}>\mathrm{K}_{\mathrm{a}_2}\)
230043
Equal volumes of three acid solutions of \(\mathrm{pH}_3 3,4\) and 5 are mixed in a vessel. What will be \(\mathrm{H}^{+}\)ion concentration in the mixture ?
1 \(3.7 \times 10^{-3} \mathrm{M}\)
2 \(1.11 \times 10^{-3} \mathrm{M}\)
3 \(1.11 \times 10^{-4} \mathrm{M}\)
4 \(3.7 \times 10^{-4} \mathrm{M}\)
Explanation:
We know that, \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\) Given, \(\left[\mathrm{H}^{+}\right]\)of soln. \(1=10^{-3}\) \(\left[\mathrm{H}^{+}\right]\)of soln. \(2=10^{-4},\left[\mathrm{H}^{+}\right]\)of soln. \(3=10^{-5}\) Total concentration of \[ \begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3}\left(1+1 \times 10^{-1}+1 \times 10^{-2}\right)} \\ & 10^{-3}\left(\frac{1}{1}+\frac{1}{10}+\frac{1}{100}\right) \Rightarrow 10^{-3}\left(\frac{10+10+1}{100}\right) \\ & =1.11 \times 10^{-3} \end{aligned} \] So, \(\mathrm{H}^{+}\)ion concentration in mixture of equal volume of these acid solution. \[ =\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} \mathrm{M} \]
NEET-2008
Ionic Equilibrium
230033
Which pair of the following will not show common ion effect?
Common ion effect is shown when weak electrolyte and strong electrolyte is mixed. \(\mathrm{H}_2 \mathrm{~S}+\mathrm{HNO}_3\) not shown common ion effect because these are not weak and strong electrolyte. Rest of all are weak and strong electrolyte hence they shows common ion effect.
CG PET-22.05.2022
Ionic Equilibrium
230036
The common ion effect is shown by which one of the following set solution
\(\mathrm{NH}_4 \mathrm{OH}+\mathrm{NH}_4 \mathrm{Cl}\) shows common ion effect \(\mathrm{NH}_4 \mathrm{OH}\) is a weak base and undergoes ionisation to a limited extent as follows: \(\mathrm{NH}_4 \mathrm{OH}\) 时 \(\mathrm{NH}_4^{+}+\mathrm{OH}^{-}\) \(\mathrm{NH}_4 \mathrm{Cl}\) is strong electrolyte \(\mathrm{NH}_4 \mathrm{Cl} \longrightarrow \mathrm{NH}_4^{+}+\mathrm{Cl}^{-}\) Due to the addition of \(\mathrm{NH}_4 \mathrm{Cl}\), the conc. of \(\mathrm{NH}_4{ }^{+}\)ion in \(\mathrm{NH}_2 \mathrm{OH}\) solution increases and equilibrium shift towords left. So, due to \(\mathrm{NH}_4{ }^{+}\)(common ion) dissociation of \(\mathrm{NH}_4 \mathrm{OH}\) is suppressed.
AMU-2001
Ionic Equilibrium
230040
Correct relation between dissociation constant of a dibasic acid is
(ii) \(\mathrm{HA}^{-}\)目被 \(\mathrm{A}^{2-}+\mathrm{H}^{+}\) In the \(1^{\text {st }}\) step \(\mathrm{H}^{+}\)ion comes from neutral molecule, while in the \(2^{\text {nd }}\) step the \(\mathrm{H}^{+}\)ion comes from negatively charged ions. The presence of -ve charge makes the removal of \(\mathrm{H}^{+}\) ion difficult Thus \(\mathrm{K}_{\mathrm{a}_1}>\mathrm{K}_{\mathrm{a}_2}\)