229522
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of
1 hydrolysis
2 anionic hydrolysis
3 cationic hydrolysis
4 dissociation +
Explanation:
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of cationic hydrolysis $\mathrm{FeCl}_3$ is a salt of weak base and strong acid. $\begin{aligned} & \mathrm{FeCl}_3+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{HCl} \\ & \mathrm{Fe}^{3+}+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{H}^{+} \end{aligned}$
AP-EAMCET-1991
Ionic Equilibrium
229524
The nature of $0.1 \mathrm{M}$ solution of sodium bisulphate is
1 acidic
2 basic
3 neutral
4 can't predict
Explanation:
The sodiumbisulphate is the sodium salt of the bisulfate ion with the molecular formula $\mathrm{NaHSO}_4$ In aqueous solutions. $\mathrm{H}$ releases $\mathrm{H}^{+}$ion The question is shown in fig. $\begin{aligned} \mathrm{NaHSO}_4=\mathrm{Na}^{+} & +\mathrm{HSO}_4^{-} \\ \mathrm{HSO}_3^{-} & =\underset{\downarrow}{\mathrm{H}^{+}}+\mathrm{SO}_4^{2-} \\ & \text { Release } \mathrm{H}^{+} \text {ion } \end{aligned}$ So the nature of $0.1 \mathrm{M}$ solutions of Sodiumbisulphate is acidic in Nature.
AP-EAMCET-1993
Ionic Equilibrium
229516
Given below are the oxides: $\mathrm{Na}_2 \mathrm{O}, \mathrm{As}_2 \mathrm{O}_3, \mathrm{~N}_2 \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_2 \mathrm{O}_7$ Number of amphoteric oxides is:
1 0
2 1
3 2
4 3
Explanation:
An amphoteric oxide is an oxide that can act either as an acid or as a base to create oxides and hydroxides are formed when metals have several oxidation states. $\mathrm{Na}_2 \mathrm{O} \rightarrow \text { Basic }$ $\mathrm{As}_2 \mathrm{O}_3 \rightarrow$ Amphoteric $\mathrm{N}_2 \mathrm{O} \rightarrow$ Neutral $\mathrm{Cl}_2 \mathrm{O}_7 \rightarrow$ Acidic $\mathrm{NO} \rightarrow$ Neutral So, only $\mathrm{As}_2 \mathrm{O}_3$ shows amphoteric oxides.
Shift-I
Ionic Equilibrium
229517
When $10 \mathrm{ml}$ of $10 \mathrm{M}$ solution of $\mathrm{H}_2 \mathrm{SO}_4$ and 100 $\mathrm{ml}$ of $1 \mathrm{M}$ solution of $\mathrm{NaOH}$ are mixed, the resulting solution will be?
1 Acidic
2 Neutral
3 Alkaline
4 Can not be predicted
Explanation:
For, $\mathrm{NaOH}:-$ $\mathrm{N}_1 \mathrm{~V}_1=100 \mathrm{ml} \times 1 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ For $\mathrm{H}_2 \mathrm{SO}_4:-$ $\mathrm{N}_2 \mathrm{~V}_2=10 \mathrm{ml} \times 10 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ Hence, The resulting solution will be acidic.
CG PET-22.05.2022
Ionic Equilibrium
229518
In case of following Bronsted base, the correct order of basic strength is
As we know, More the number of oxygen atoms attached, more is the acidity of the molecule. So, Order of acidity is:- $\mathrm{HClO}<\mathrm{HClO}_2<\mathrm{HClO}_3<\mathrm{HClO}_4$ So, the conjugate base order will be just the reverse:$\mathrm{ClO}^{-}>\mathrm{ClO}_2^{-}>\mathrm{ClO}_3^{-}>\mathrm{ClO}_4^{-}$
229522
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of
1 hydrolysis
2 anionic hydrolysis
3 cationic hydrolysis
4 dissociation +
Explanation:
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of cationic hydrolysis $\mathrm{FeCl}_3$ is a salt of weak base and strong acid. $\begin{aligned} & \mathrm{FeCl}_3+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{HCl} \\ & \mathrm{Fe}^{3+}+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{H}^{+} \end{aligned}$
AP-EAMCET-1991
Ionic Equilibrium
229524
The nature of $0.1 \mathrm{M}$ solution of sodium bisulphate is
1 acidic
2 basic
3 neutral
4 can't predict
Explanation:
The sodiumbisulphate is the sodium salt of the bisulfate ion with the molecular formula $\mathrm{NaHSO}_4$ In aqueous solutions. $\mathrm{H}$ releases $\mathrm{H}^{+}$ion The question is shown in fig. $\begin{aligned} \mathrm{NaHSO}_4=\mathrm{Na}^{+} & +\mathrm{HSO}_4^{-} \\ \mathrm{HSO}_3^{-} & =\underset{\downarrow}{\mathrm{H}^{+}}+\mathrm{SO}_4^{2-} \\ & \text { Release } \mathrm{H}^{+} \text {ion } \end{aligned}$ So the nature of $0.1 \mathrm{M}$ solutions of Sodiumbisulphate is acidic in Nature.
AP-EAMCET-1993
Ionic Equilibrium
229516
Given below are the oxides: $\mathrm{Na}_2 \mathrm{O}, \mathrm{As}_2 \mathrm{O}_3, \mathrm{~N}_2 \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_2 \mathrm{O}_7$ Number of amphoteric oxides is:
1 0
2 1
3 2
4 3
Explanation:
An amphoteric oxide is an oxide that can act either as an acid or as a base to create oxides and hydroxides are formed when metals have several oxidation states. $\mathrm{Na}_2 \mathrm{O} \rightarrow \text { Basic }$ $\mathrm{As}_2 \mathrm{O}_3 \rightarrow$ Amphoteric $\mathrm{N}_2 \mathrm{O} \rightarrow$ Neutral $\mathrm{Cl}_2 \mathrm{O}_7 \rightarrow$ Acidic $\mathrm{NO} \rightarrow$ Neutral So, only $\mathrm{As}_2 \mathrm{O}_3$ shows amphoteric oxides.
Shift-I
Ionic Equilibrium
229517
When $10 \mathrm{ml}$ of $10 \mathrm{M}$ solution of $\mathrm{H}_2 \mathrm{SO}_4$ and 100 $\mathrm{ml}$ of $1 \mathrm{M}$ solution of $\mathrm{NaOH}$ are mixed, the resulting solution will be?
1 Acidic
2 Neutral
3 Alkaline
4 Can not be predicted
Explanation:
For, $\mathrm{NaOH}:-$ $\mathrm{N}_1 \mathrm{~V}_1=100 \mathrm{ml} \times 1 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ For $\mathrm{H}_2 \mathrm{SO}_4:-$ $\mathrm{N}_2 \mathrm{~V}_2=10 \mathrm{ml} \times 10 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ Hence, The resulting solution will be acidic.
CG PET-22.05.2022
Ionic Equilibrium
229518
In case of following Bronsted base, the correct order of basic strength is
As we know, More the number of oxygen atoms attached, more is the acidity of the molecule. So, Order of acidity is:- $\mathrm{HClO}<\mathrm{HClO}_2<\mathrm{HClO}_3<\mathrm{HClO}_4$ So, the conjugate base order will be just the reverse:$\mathrm{ClO}^{-}>\mathrm{ClO}_2^{-}>\mathrm{ClO}_3^{-}>\mathrm{ClO}_4^{-}$
229522
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of
1 hydrolysis
2 anionic hydrolysis
3 cationic hydrolysis
4 dissociation +
Explanation:
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of cationic hydrolysis $\mathrm{FeCl}_3$ is a salt of weak base and strong acid. $\begin{aligned} & \mathrm{FeCl}_3+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{HCl} \\ & \mathrm{Fe}^{3+}+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{H}^{+} \end{aligned}$
AP-EAMCET-1991
Ionic Equilibrium
229524
The nature of $0.1 \mathrm{M}$ solution of sodium bisulphate is
1 acidic
2 basic
3 neutral
4 can't predict
Explanation:
The sodiumbisulphate is the sodium salt of the bisulfate ion with the molecular formula $\mathrm{NaHSO}_4$ In aqueous solutions. $\mathrm{H}$ releases $\mathrm{H}^{+}$ion The question is shown in fig. $\begin{aligned} \mathrm{NaHSO}_4=\mathrm{Na}^{+} & +\mathrm{HSO}_4^{-} \\ \mathrm{HSO}_3^{-} & =\underset{\downarrow}{\mathrm{H}^{+}}+\mathrm{SO}_4^{2-} \\ & \text { Release } \mathrm{H}^{+} \text {ion } \end{aligned}$ So the nature of $0.1 \mathrm{M}$ solutions of Sodiumbisulphate is acidic in Nature.
AP-EAMCET-1993
Ionic Equilibrium
229516
Given below are the oxides: $\mathrm{Na}_2 \mathrm{O}, \mathrm{As}_2 \mathrm{O}_3, \mathrm{~N}_2 \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_2 \mathrm{O}_7$ Number of amphoteric oxides is:
1 0
2 1
3 2
4 3
Explanation:
An amphoteric oxide is an oxide that can act either as an acid or as a base to create oxides and hydroxides are formed when metals have several oxidation states. $\mathrm{Na}_2 \mathrm{O} \rightarrow \text { Basic }$ $\mathrm{As}_2 \mathrm{O}_3 \rightarrow$ Amphoteric $\mathrm{N}_2 \mathrm{O} \rightarrow$ Neutral $\mathrm{Cl}_2 \mathrm{O}_7 \rightarrow$ Acidic $\mathrm{NO} \rightarrow$ Neutral So, only $\mathrm{As}_2 \mathrm{O}_3$ shows amphoteric oxides.
Shift-I
Ionic Equilibrium
229517
When $10 \mathrm{ml}$ of $10 \mathrm{M}$ solution of $\mathrm{H}_2 \mathrm{SO}_4$ and 100 $\mathrm{ml}$ of $1 \mathrm{M}$ solution of $\mathrm{NaOH}$ are mixed, the resulting solution will be?
1 Acidic
2 Neutral
3 Alkaline
4 Can not be predicted
Explanation:
For, $\mathrm{NaOH}:-$ $\mathrm{N}_1 \mathrm{~V}_1=100 \mathrm{ml} \times 1 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ For $\mathrm{H}_2 \mathrm{SO}_4:-$ $\mathrm{N}_2 \mathrm{~V}_2=10 \mathrm{ml} \times 10 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ Hence, The resulting solution will be acidic.
CG PET-22.05.2022
Ionic Equilibrium
229518
In case of following Bronsted base, the correct order of basic strength is
As we know, More the number of oxygen atoms attached, more is the acidity of the molecule. So, Order of acidity is:- $\mathrm{HClO}<\mathrm{HClO}_2<\mathrm{HClO}_3<\mathrm{HClO}_4$ So, the conjugate base order will be just the reverse:$\mathrm{ClO}^{-}>\mathrm{ClO}_2^{-}>\mathrm{ClO}_3^{-}>\mathrm{ClO}_4^{-}$
229522
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of
1 hydrolysis
2 anionic hydrolysis
3 cationic hydrolysis
4 dissociation +
Explanation:
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of cationic hydrolysis $\mathrm{FeCl}_3$ is a salt of weak base and strong acid. $\begin{aligned} & \mathrm{FeCl}_3+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{HCl} \\ & \mathrm{Fe}^{3+}+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{H}^{+} \end{aligned}$
AP-EAMCET-1991
Ionic Equilibrium
229524
The nature of $0.1 \mathrm{M}$ solution of sodium bisulphate is
1 acidic
2 basic
3 neutral
4 can't predict
Explanation:
The sodiumbisulphate is the sodium salt of the bisulfate ion with the molecular formula $\mathrm{NaHSO}_4$ In aqueous solutions. $\mathrm{H}$ releases $\mathrm{H}^{+}$ion The question is shown in fig. $\begin{aligned} \mathrm{NaHSO}_4=\mathrm{Na}^{+} & +\mathrm{HSO}_4^{-} \\ \mathrm{HSO}_3^{-} & =\underset{\downarrow}{\mathrm{H}^{+}}+\mathrm{SO}_4^{2-} \\ & \text { Release } \mathrm{H}^{+} \text {ion } \end{aligned}$ So the nature of $0.1 \mathrm{M}$ solutions of Sodiumbisulphate is acidic in Nature.
AP-EAMCET-1993
Ionic Equilibrium
229516
Given below are the oxides: $\mathrm{Na}_2 \mathrm{O}, \mathrm{As}_2 \mathrm{O}_3, \mathrm{~N}_2 \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_2 \mathrm{O}_7$ Number of amphoteric oxides is:
1 0
2 1
3 2
4 3
Explanation:
An amphoteric oxide is an oxide that can act either as an acid or as a base to create oxides and hydroxides are formed when metals have several oxidation states. $\mathrm{Na}_2 \mathrm{O} \rightarrow \text { Basic }$ $\mathrm{As}_2 \mathrm{O}_3 \rightarrow$ Amphoteric $\mathrm{N}_2 \mathrm{O} \rightarrow$ Neutral $\mathrm{Cl}_2 \mathrm{O}_7 \rightarrow$ Acidic $\mathrm{NO} \rightarrow$ Neutral So, only $\mathrm{As}_2 \mathrm{O}_3$ shows amphoteric oxides.
Shift-I
Ionic Equilibrium
229517
When $10 \mathrm{ml}$ of $10 \mathrm{M}$ solution of $\mathrm{H}_2 \mathrm{SO}_4$ and 100 $\mathrm{ml}$ of $1 \mathrm{M}$ solution of $\mathrm{NaOH}$ are mixed, the resulting solution will be?
1 Acidic
2 Neutral
3 Alkaline
4 Can not be predicted
Explanation:
For, $\mathrm{NaOH}:-$ $\mathrm{N}_1 \mathrm{~V}_1=100 \mathrm{ml} \times 1 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ For $\mathrm{H}_2 \mathrm{SO}_4:-$ $\mathrm{N}_2 \mathrm{~V}_2=10 \mathrm{ml} \times 10 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ Hence, The resulting solution will be acidic.
CG PET-22.05.2022
Ionic Equilibrium
229518
In case of following Bronsted base, the correct order of basic strength is
As we know, More the number of oxygen atoms attached, more is the acidity of the molecule. So, Order of acidity is:- $\mathrm{HClO}<\mathrm{HClO}_2<\mathrm{HClO}_3<\mathrm{HClO}_4$ So, the conjugate base order will be just the reverse:$\mathrm{ClO}^{-}>\mathrm{ClO}_2^{-}>\mathrm{ClO}_3^{-}>\mathrm{ClO}_4^{-}$
229522
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of
1 hydrolysis
2 anionic hydrolysis
3 cationic hydrolysis
4 dissociation +
Explanation:
Aqueous solution of $\mathrm{FeCl}_3$ is acidic because of cationic hydrolysis $\mathrm{FeCl}_3$ is a salt of weak base and strong acid. $\begin{aligned} & \mathrm{FeCl}_3+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{HCl} \\ & \mathrm{Fe}^{3+}+3 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_3+3 \mathrm{H}^{+} \end{aligned}$
AP-EAMCET-1991
Ionic Equilibrium
229524
The nature of $0.1 \mathrm{M}$ solution of sodium bisulphate is
1 acidic
2 basic
3 neutral
4 can't predict
Explanation:
The sodiumbisulphate is the sodium salt of the bisulfate ion with the molecular formula $\mathrm{NaHSO}_4$ In aqueous solutions. $\mathrm{H}$ releases $\mathrm{H}^{+}$ion The question is shown in fig. $\begin{aligned} \mathrm{NaHSO}_4=\mathrm{Na}^{+} & +\mathrm{HSO}_4^{-} \\ \mathrm{HSO}_3^{-} & =\underset{\downarrow}{\mathrm{H}^{+}}+\mathrm{SO}_4^{2-} \\ & \text { Release } \mathrm{H}^{+} \text {ion } \end{aligned}$ So the nature of $0.1 \mathrm{M}$ solutions of Sodiumbisulphate is acidic in Nature.
AP-EAMCET-1993
Ionic Equilibrium
229516
Given below are the oxides: $\mathrm{Na}_2 \mathrm{O}, \mathrm{As}_2 \mathrm{O}_3, \mathrm{~N}_2 \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_2 \mathrm{O}_7$ Number of amphoteric oxides is:
1 0
2 1
3 2
4 3
Explanation:
An amphoteric oxide is an oxide that can act either as an acid or as a base to create oxides and hydroxides are formed when metals have several oxidation states. $\mathrm{Na}_2 \mathrm{O} \rightarrow \text { Basic }$ $\mathrm{As}_2 \mathrm{O}_3 \rightarrow$ Amphoteric $\mathrm{N}_2 \mathrm{O} \rightarrow$ Neutral $\mathrm{Cl}_2 \mathrm{O}_7 \rightarrow$ Acidic $\mathrm{NO} \rightarrow$ Neutral So, only $\mathrm{As}_2 \mathrm{O}_3$ shows amphoteric oxides.
Shift-I
Ionic Equilibrium
229517
When $10 \mathrm{ml}$ of $10 \mathrm{M}$ solution of $\mathrm{H}_2 \mathrm{SO}_4$ and 100 $\mathrm{ml}$ of $1 \mathrm{M}$ solution of $\mathrm{NaOH}$ are mixed, the resulting solution will be?
1 Acidic
2 Neutral
3 Alkaline
4 Can not be predicted
Explanation:
For, $\mathrm{NaOH}:-$ $\mathrm{N}_1 \mathrm{~V}_1=100 \mathrm{ml} \times 1 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ For $\mathrm{H}_2 \mathrm{SO}_4:-$ $\mathrm{N}_2 \mathrm{~V}_2=10 \mathrm{ml} \times 10 \mathrm{~N}=100 \mathrm{ml}(\mathrm{N})$ Hence, The resulting solution will be acidic.
CG PET-22.05.2022
Ionic Equilibrium
229518
In case of following Bronsted base, the correct order of basic strength is
As we know, More the number of oxygen atoms attached, more is the acidity of the molecule. So, Order of acidity is:- $\mathrm{HClO}<\mathrm{HClO}_2<\mathrm{HClO}_3<\mathrm{HClO}_4$ So, the conjugate base order will be just the reverse:$\mathrm{ClO}^{-}>\mathrm{ClO}_2^{-}>\mathrm{ClO}_3^{-}>\mathrm{ClO}_4^{-}$