01. Solubility and Solubility Product Constant
Ionic Equilibrium

229381 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ is $1.0 \times 10^{-11}$. At which $\mathrm{pH}$, will $\mathrm{Mg}^{2+}$ ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_2$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions?

1 9
2 10
3 11
4 8
Ionic Equilibrium

229382 The solubility product $\left(K_{\mathrm{sp}}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$.
$\begin{array}{ll}\text { Compound } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & \mathbf{1 . 0} \times \mathbf{1 0}^{-16} \\ \mathrm{PbCrO}_4 & \mathbf{4 . 0} \times \mathbf{1 0}^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & \mathbf{8 . 0} \times \mathbf{1 0}^{-12}\end{array}$
The most soluble and least soluble compounds are respectively.

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
KEAM-2011
Ionic Equilibrium

229384 Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^2$ in a solution in which the concentration of $\mathrm{A}^{+}$ions is $10^{-3}$ M. The salt will precipitate when the concentration of $\mathrm{B}^{-}$ions is kept

1 Between $10^{-8} \mathrm{M}$ to $10^{-7} \mathrm{M}$
2 Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
3 $>10^{-5} \mathrm{M}$
4 $<10^{-8} \mathrm{M}$
KCET-2006
Ionic Equilibrium

229385 The solubility of $\mathrm{PbF}_2$ in water at $25^{\circ} \mathrm{C}$ is $\approx 10^{-3}$ M. What is its solubility in $0.05 \mathrm{M}$ NaF solution? Assume the later to be fully ionised.

1 $1.6 \times 10^{-6} \mathrm{M}$
2 $1.2 \times 10^{-6} \mathrm{M}$
3 $1.2 \times 10^{-5} \mathrm{M}$
4 $1.6 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229381 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ is $1.0 \times 10^{-11}$. At which $\mathrm{pH}$, will $\mathrm{Mg}^{2+}$ ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_2$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions?

1 9
2 10
3 11
4 8
Ionic Equilibrium

229382 The solubility product $\left(K_{\mathrm{sp}}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$.
$\begin{array}{ll}\text { Compound } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & \mathbf{1 . 0} \times \mathbf{1 0}^{-16} \\ \mathrm{PbCrO}_4 & \mathbf{4 . 0} \times \mathbf{1 0}^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & \mathbf{8 . 0} \times \mathbf{1 0}^{-12}\end{array}$
The most soluble and least soluble compounds are respectively.

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
KEAM-2011
Ionic Equilibrium

229384 Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^2$ in a solution in which the concentration of $\mathrm{A}^{+}$ions is $10^{-3}$ M. The salt will precipitate when the concentration of $\mathrm{B}^{-}$ions is kept

1 Between $10^{-8} \mathrm{M}$ to $10^{-7} \mathrm{M}$
2 Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
3 $>10^{-5} \mathrm{M}$
4 $<10^{-8} \mathrm{M}$
KCET-2006
Ionic Equilibrium

229385 The solubility of $\mathrm{PbF}_2$ in water at $25^{\circ} \mathrm{C}$ is $\approx 10^{-3}$ M. What is its solubility in $0.05 \mathrm{M}$ NaF solution? Assume the later to be fully ionised.

1 $1.6 \times 10^{-6} \mathrm{M}$
2 $1.2 \times 10^{-6} \mathrm{M}$
3 $1.2 \times 10^{-5} \mathrm{M}$
4 $1.6 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229381 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ is $1.0 \times 10^{-11}$. At which $\mathrm{pH}$, will $\mathrm{Mg}^{2+}$ ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_2$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions?

1 9
2 10
3 11
4 8
Ionic Equilibrium

229382 The solubility product $\left(K_{\mathrm{sp}}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$.
$\begin{array}{ll}\text { Compound } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & \mathbf{1 . 0} \times \mathbf{1 0}^{-16} \\ \mathrm{PbCrO}_4 & \mathbf{4 . 0} \times \mathbf{1 0}^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & \mathbf{8 . 0} \times \mathbf{1 0}^{-12}\end{array}$
The most soluble and least soluble compounds are respectively.

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
KEAM-2011
Ionic Equilibrium

229384 Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^2$ in a solution in which the concentration of $\mathrm{A}^{+}$ions is $10^{-3}$ M. The salt will precipitate when the concentration of $\mathrm{B}^{-}$ions is kept

1 Between $10^{-8} \mathrm{M}$ to $10^{-7} \mathrm{M}$
2 Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
3 $>10^{-5} \mathrm{M}$
4 $<10^{-8} \mathrm{M}$
KCET-2006
Ionic Equilibrium

229385 The solubility of $\mathrm{PbF}_2$ in water at $25^{\circ} \mathrm{C}$ is $\approx 10^{-3}$ M. What is its solubility in $0.05 \mathrm{M}$ NaF solution? Assume the later to be fully ionised.

1 $1.6 \times 10^{-6} \mathrm{M}$
2 $1.2 \times 10^{-6} \mathrm{M}$
3 $1.2 \times 10^{-5} \mathrm{M}$
4 $1.6 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229381 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ is $1.0 \times 10^{-11}$. At which $\mathrm{pH}$, will $\mathrm{Mg}^{2+}$ ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_2$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions?

1 9
2 10
3 11
4 8
Ionic Equilibrium

229382 The solubility product $\left(K_{\mathrm{sp}}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$.
$\begin{array}{ll}\text { Compound } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & \mathbf{1 . 0} \times \mathbf{1 0}^{-16} \\ \mathrm{PbCrO}_4 & \mathbf{4 . 0} \times \mathbf{1 0}^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & \mathbf{8 . 0} \times \mathbf{1 0}^{-12}\end{array}$
The most soluble and least soluble compounds are respectively.

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
KEAM-2011
Ionic Equilibrium

229384 Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^2$ in a solution in which the concentration of $\mathrm{A}^{+}$ions is $10^{-3}$ M. The salt will precipitate when the concentration of $\mathrm{B}^{-}$ions is kept

1 Between $10^{-8} \mathrm{M}$ to $10^{-7} \mathrm{M}$
2 Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
3 $>10^{-5} \mathrm{M}$
4 $<10^{-8} \mathrm{M}$
KCET-2006
Ionic Equilibrium

229385 The solubility of $\mathrm{PbF}_2$ in water at $25^{\circ} \mathrm{C}$ is $\approx 10^{-3}$ M. What is its solubility in $0.05 \mathrm{M}$ NaF solution? Assume the later to be fully ionised.

1 $1.6 \times 10^{-6} \mathrm{M}$
2 $1.2 \times 10^{-6} \mathrm{M}$
3 $1.2 \times 10^{-5} \mathrm{M}$
4 $1.6 \times 10^{-4} \mathrm{M}$