01. Solubility and Solubility Product Constant
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229458 The expression for the solubility product of $\mathrm{Ag}_2 \mathrm{CO}_3$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^3$
3 $\mathrm{K}_{\mathrm{sp}}=27 \mathrm{~s}^4$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}$
Ionic Equilibrium

229459 The solubility of saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $\mathrm{s} \mathrm{mol} \mathrm{L}^{-1}$. What is its solubility product?

1 $4 \mathrm{~s}^3$
2 $\mathrm{s}^3$
3 $2 \mathrm{~s}^3$
4 $16 \mathrm{~s}^2$
Ionic Equilibrium

229460 A 0.1 aqueous solution of a weak acid is $2 \%$ ionised. If the ionic product of water is $1 \times 10^{-4}$, the $[\mathrm{OH}]$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $2 \times 10^{-3} \mathrm{M}$
3 $1 \times 10^{-14} \mathrm{M}$
4 None of these
Ionic Equilibrium

229461 Solubility product of $\mathrm{PbCl}_2$ at $298 \mathrm{~K}$ is $1 \times 10^{-6}$, at this temperature solubility of $\mathrm{PbCl}_2$ in $\mathrm{mol} / \mathrm{L}$ is

1 $\left(1 \times 10^{-6}\right)^{1 / 2}$
2 $\left(1 \times 10^{-6}\right)^{1 / 3}$
3 $\left(0.25 \times 10^{-6}\right)^{1 / 3}$
4 $\left(2.5 \times 10^{-6}\right)^{1 / 2}$
Ionic Equilibrium

229458 The expression for the solubility product of $\mathrm{Ag}_2 \mathrm{CO}_3$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^3$
3 $\mathrm{K}_{\mathrm{sp}}=27 \mathrm{~s}^4$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}$
Ionic Equilibrium

229459 The solubility of saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $\mathrm{s} \mathrm{mol} \mathrm{L}^{-1}$. What is its solubility product?

1 $4 \mathrm{~s}^3$
2 $\mathrm{s}^3$
3 $2 \mathrm{~s}^3$
4 $16 \mathrm{~s}^2$
Ionic Equilibrium

229460 A 0.1 aqueous solution of a weak acid is $2 \%$ ionised. If the ionic product of water is $1 \times 10^{-4}$, the $[\mathrm{OH}]$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $2 \times 10^{-3} \mathrm{M}$
3 $1 \times 10^{-14} \mathrm{M}$
4 None of these
Ionic Equilibrium

229461 Solubility product of $\mathrm{PbCl}_2$ at $298 \mathrm{~K}$ is $1 \times 10^{-6}$, at this temperature solubility of $\mathrm{PbCl}_2$ in $\mathrm{mol} / \mathrm{L}$ is

1 $\left(1 \times 10^{-6}\right)^{1 / 2}$
2 $\left(1 \times 10^{-6}\right)^{1 / 3}$
3 $\left(0.25 \times 10^{-6}\right)^{1 / 3}$
4 $\left(2.5 \times 10^{-6}\right)^{1 / 2}$
Ionic Equilibrium

229458 The expression for the solubility product of $\mathrm{Ag}_2 \mathrm{CO}_3$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^3$
3 $\mathrm{K}_{\mathrm{sp}}=27 \mathrm{~s}^4$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}$
Ionic Equilibrium

229459 The solubility of saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $\mathrm{s} \mathrm{mol} \mathrm{L}^{-1}$. What is its solubility product?

1 $4 \mathrm{~s}^3$
2 $\mathrm{s}^3$
3 $2 \mathrm{~s}^3$
4 $16 \mathrm{~s}^2$
Ionic Equilibrium

229460 A 0.1 aqueous solution of a weak acid is $2 \%$ ionised. If the ionic product of water is $1 \times 10^{-4}$, the $[\mathrm{OH}]$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $2 \times 10^{-3} \mathrm{M}$
3 $1 \times 10^{-14} \mathrm{M}$
4 None of these
Ionic Equilibrium

229461 Solubility product of $\mathrm{PbCl}_2$ at $298 \mathrm{~K}$ is $1 \times 10^{-6}$, at this temperature solubility of $\mathrm{PbCl}_2$ in $\mathrm{mol} / \mathrm{L}$ is

1 $\left(1 \times 10^{-6}\right)^{1 / 2}$
2 $\left(1 \times 10^{-6}\right)^{1 / 3}$
3 $\left(0.25 \times 10^{-6}\right)^{1 / 3}$
4 $\left(2.5 \times 10^{-6}\right)^{1 / 2}$
Ionic Equilibrium

229458 The expression for the solubility product of $\mathrm{Ag}_2 \mathrm{CO}_3$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^3$
3 $\mathrm{K}_{\mathrm{sp}}=27 \mathrm{~s}^4$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{s}$
Ionic Equilibrium

229459 The solubility of saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $\mathrm{s} \mathrm{mol} \mathrm{L}^{-1}$. What is its solubility product?

1 $4 \mathrm{~s}^3$
2 $\mathrm{s}^3$
3 $2 \mathrm{~s}^3$
4 $16 \mathrm{~s}^2$
Ionic Equilibrium

229460 A 0.1 aqueous solution of a weak acid is $2 \%$ ionised. If the ionic product of water is $1 \times 10^{-4}$, the $[\mathrm{OH}]$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $2 \times 10^{-3} \mathrm{M}$
3 $1 \times 10^{-14} \mathrm{M}$
4 None of these
Ionic Equilibrium

229461 Solubility product of $\mathrm{PbCl}_2$ at $298 \mathrm{~K}$ is $1 \times 10^{-6}$, at this temperature solubility of $\mathrm{PbCl}_2$ in $\mathrm{mol} / \mathrm{L}$ is

1 $\left(1 \times 10^{-6}\right)^{1 / 2}$
2 $\left(1 \times 10^{-6}\right)^{1 / 3}$
3 $\left(0.25 \times 10^{-6}\right)^{1 / 3}$
4 $\left(2.5 \times 10^{-6}\right)^{1 / 2}$