01. Solubility and Solubility Product Constant
Ionic Equilibrium

229475 The solubility $\mathrm{CaF}_2$ is $s$ moles/litre. Then solubility product is :

1 $\mathrm{s}^2$
2 $4 s^3$
3 $3 \mathrm{~s}^2$
4 $\mathrm{s}^3$
Ionic Equilibrium

229476 The solubility product of $\mathrm{Al}_2\left(\mathrm{SO}_4\right)_3$ is given by the expression :

1 $\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_4^{2-}\right]$
2 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]$
3 $\left[\mathrm{Al}^{3+}\right]^3\left[\mathrm{SO}_4^{2-}\right]^2$
4 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]^3$
Ionic Equilibrium

229360 At $90^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_3 \mathrm{O}^{+}$in pure water is $10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of $K_w$ at this temperature?

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-14}$
4 $10^{-12}$
Ionic Equilibrium

229356 The $K_{\mathrm{sp}}$ for bismuth sulphide $\left(\mathrm{Bi}_2 \mathrm{~S}_3\right)$ is $1.08 \times$ $10^{-73}$. The solubility of $\mathrm{Bi}_2 \mathrm{~S}_3$ in $\mathrm{mol} \mathrm{L}^{-1}$ at $298 \mathrm{~K}$ is

1 $1.0 \times 10^{-15}$
2 $2.7 \times 10^{-12}$
3 $3.2 \times 10^{-10}$
4 $4.2 \times 10^{-8}$
Ionic Equilibrium

229363 Magnesium fluoride $\mathrm{MgF}_2$ is a slightly soluble salt whose solubility product $\mathrm{K}_{\mathrm{SP}}=3.7 \times 10^{-8}$ What is the approximate solubility of $\mathrm{MgF}_2$ ?

1 $9.2 \times 10^{-5} \mathrm{M}$
2 $1.2 \times 10^{-8} \mathrm{M}$
3 $1.4 \times 10^{-4} \mathrm{M}$
4 $2.1 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229475 The solubility $\mathrm{CaF}_2$ is $s$ moles/litre. Then solubility product is :

1 $\mathrm{s}^2$
2 $4 s^3$
3 $3 \mathrm{~s}^2$
4 $\mathrm{s}^3$
Ionic Equilibrium

229476 The solubility product of $\mathrm{Al}_2\left(\mathrm{SO}_4\right)_3$ is given by the expression :

1 $\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_4^{2-}\right]$
2 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]$
3 $\left[\mathrm{Al}^{3+}\right]^3\left[\mathrm{SO}_4^{2-}\right]^2$
4 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]^3$
Ionic Equilibrium

229360 At $90^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_3 \mathrm{O}^{+}$in pure water is $10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of $K_w$ at this temperature?

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-14}$
4 $10^{-12}$
Ionic Equilibrium

229356 The $K_{\mathrm{sp}}$ for bismuth sulphide $\left(\mathrm{Bi}_2 \mathrm{~S}_3\right)$ is $1.08 \times$ $10^{-73}$. The solubility of $\mathrm{Bi}_2 \mathrm{~S}_3$ in $\mathrm{mol} \mathrm{L}^{-1}$ at $298 \mathrm{~K}$ is

1 $1.0 \times 10^{-15}$
2 $2.7 \times 10^{-12}$
3 $3.2 \times 10^{-10}$
4 $4.2 \times 10^{-8}$
Ionic Equilibrium

229363 Magnesium fluoride $\mathrm{MgF}_2$ is a slightly soluble salt whose solubility product $\mathrm{K}_{\mathrm{SP}}=3.7 \times 10^{-8}$ What is the approximate solubility of $\mathrm{MgF}_2$ ?

1 $9.2 \times 10^{-5} \mathrm{M}$
2 $1.2 \times 10^{-8} \mathrm{M}$
3 $1.4 \times 10^{-4} \mathrm{M}$
4 $2.1 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229475 The solubility $\mathrm{CaF}_2$ is $s$ moles/litre. Then solubility product is :

1 $\mathrm{s}^2$
2 $4 s^3$
3 $3 \mathrm{~s}^2$
4 $\mathrm{s}^3$
Ionic Equilibrium

229476 The solubility product of $\mathrm{Al}_2\left(\mathrm{SO}_4\right)_3$ is given by the expression :

1 $\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_4^{2-}\right]$
2 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]$
3 $\left[\mathrm{Al}^{3+}\right]^3\left[\mathrm{SO}_4^{2-}\right]^2$
4 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]^3$
Ionic Equilibrium

229360 At $90^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_3 \mathrm{O}^{+}$in pure water is $10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of $K_w$ at this temperature?

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-14}$
4 $10^{-12}$
Ionic Equilibrium

229356 The $K_{\mathrm{sp}}$ for bismuth sulphide $\left(\mathrm{Bi}_2 \mathrm{~S}_3\right)$ is $1.08 \times$ $10^{-73}$. The solubility of $\mathrm{Bi}_2 \mathrm{~S}_3$ in $\mathrm{mol} \mathrm{L}^{-1}$ at $298 \mathrm{~K}$ is

1 $1.0 \times 10^{-15}$
2 $2.7 \times 10^{-12}$
3 $3.2 \times 10^{-10}$
4 $4.2 \times 10^{-8}$
Ionic Equilibrium

229363 Magnesium fluoride $\mathrm{MgF}_2$ is a slightly soluble salt whose solubility product $\mathrm{K}_{\mathrm{SP}}=3.7 \times 10^{-8}$ What is the approximate solubility of $\mathrm{MgF}_2$ ?

1 $9.2 \times 10^{-5} \mathrm{M}$
2 $1.2 \times 10^{-8} \mathrm{M}$
3 $1.4 \times 10^{-4} \mathrm{M}$
4 $2.1 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229475 The solubility $\mathrm{CaF}_2$ is $s$ moles/litre. Then solubility product is :

1 $\mathrm{s}^2$
2 $4 s^3$
3 $3 \mathrm{~s}^2$
4 $\mathrm{s}^3$
Ionic Equilibrium

229476 The solubility product of $\mathrm{Al}_2\left(\mathrm{SO}_4\right)_3$ is given by the expression :

1 $\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_4^{2-}\right]$
2 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]$
3 $\left[\mathrm{Al}^{3+}\right]^3\left[\mathrm{SO}_4^{2-}\right]^2$
4 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]^3$
Ionic Equilibrium

229360 At $90^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_3 \mathrm{O}^{+}$in pure water is $10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of $K_w$ at this temperature?

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-14}$
4 $10^{-12}$
Ionic Equilibrium

229356 The $K_{\mathrm{sp}}$ for bismuth sulphide $\left(\mathrm{Bi}_2 \mathrm{~S}_3\right)$ is $1.08 \times$ $10^{-73}$. The solubility of $\mathrm{Bi}_2 \mathrm{~S}_3$ in $\mathrm{mol} \mathrm{L}^{-1}$ at $298 \mathrm{~K}$ is

1 $1.0 \times 10^{-15}$
2 $2.7 \times 10^{-12}$
3 $3.2 \times 10^{-10}$
4 $4.2 \times 10^{-8}$
Ionic Equilibrium

229363 Magnesium fluoride $\mathrm{MgF}_2$ is a slightly soluble salt whose solubility product $\mathrm{K}_{\mathrm{SP}}=3.7 \times 10^{-8}$ What is the approximate solubility of $\mathrm{MgF}_2$ ?

1 $9.2 \times 10^{-5} \mathrm{M}$
2 $1.2 \times 10^{-8} \mathrm{M}$
3 $1.4 \times 10^{-4} \mathrm{M}$
4 $2.1 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229475 The solubility $\mathrm{CaF}_2$ is $s$ moles/litre. Then solubility product is :

1 $\mathrm{s}^2$
2 $4 s^3$
3 $3 \mathrm{~s}^2$
4 $\mathrm{s}^3$
Ionic Equilibrium

229476 The solubility product of $\mathrm{Al}_2\left(\mathrm{SO}_4\right)_3$ is given by the expression :

1 $\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_4^{2-}\right]$
2 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]$
3 $\left[\mathrm{Al}^{3+}\right]^3\left[\mathrm{SO}_4^{2-}\right]^2$
4 $\left[\mathrm{Al}^{3+}\right]^2\left[\mathrm{SO}_4^{2-}\right]^3$
Ionic Equilibrium

229360 At $90^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_3 \mathrm{O}^{+}$in pure water is $10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of $K_w$ at this temperature?

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-14}$
4 $10^{-12}$
Ionic Equilibrium

229356 The $K_{\mathrm{sp}}$ for bismuth sulphide $\left(\mathrm{Bi}_2 \mathrm{~S}_3\right)$ is $1.08 \times$ $10^{-73}$. The solubility of $\mathrm{Bi}_2 \mathrm{~S}_3$ in $\mathrm{mol} \mathrm{L}^{-1}$ at $298 \mathrm{~K}$ is

1 $1.0 \times 10^{-15}$
2 $2.7 \times 10^{-12}$
3 $3.2 \times 10^{-10}$
4 $4.2 \times 10^{-8}$
Ionic Equilibrium

229363 Magnesium fluoride $\mathrm{MgF}_2$ is a slightly soluble salt whose solubility product $\mathrm{K}_{\mathrm{SP}}=3.7 \times 10^{-8}$ What is the approximate solubility of $\mathrm{MgF}_2$ ?

1 $9.2 \times 10^{-5} \mathrm{M}$
2 $1.2 \times 10^{-8} \mathrm{M}$
3 $1.4 \times 10^{-4} \mathrm{M}$
4 $2.1 \times 10^{-3} \mathrm{M}$