229339 The reaction quotient $(\mathrm{Q})$ for the reaction from $\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed from right to left if
229340
The equilibrium constant for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 at a certain
temperature. The equilibrium concentrations
of $\mathrm{H}_{2}$ and $\mathrm{HI}$ are $2 \mathrm{~mol} / \mathrm{L}$ and $16 \mathrm{~mol} / \mathrm{L}$ respectively. What is the equilibrium concentration (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathbf{I}_{2}$ ?
229341
The variation of equilibrium constant with temperature is given below:
Temperature Equilibrium constant
$\begin{array}{ll}
\mathrm{T}_{1}=25^{\circ} \mathrm{C} & \mathrm{K}_{1}=10 \\
\mathrm{~T}_{2}=100^{\circ} \mathrm{C} & \mathrm{K}_{2}=100
\end{array}$
The values of $\Delta H^{0}, \Delta G^{0}$ at $T_{1}$ and $\Delta G^{0}$ at $T_{2}$ (in $\mathrm{KJ} \mathrm{Mol}^{-1}$ ) respectively are close to [ use $\mathrm{R}=$ 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ]
229339 The reaction quotient $(\mathrm{Q})$ for the reaction from $\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed from right to left if
229340
The equilibrium constant for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 at a certain
temperature. The equilibrium concentrations
of $\mathrm{H}_{2}$ and $\mathrm{HI}$ are $2 \mathrm{~mol} / \mathrm{L}$ and $16 \mathrm{~mol} / \mathrm{L}$ respectively. What is the equilibrium concentration (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathbf{I}_{2}$ ?
229341
The variation of equilibrium constant with temperature is given below:
Temperature Equilibrium constant
$\begin{array}{ll}
\mathrm{T}_{1}=25^{\circ} \mathrm{C} & \mathrm{K}_{1}=10 \\
\mathrm{~T}_{2}=100^{\circ} \mathrm{C} & \mathrm{K}_{2}=100
\end{array}$
The values of $\Delta H^{0}, \Delta G^{0}$ at $T_{1}$ and $\Delta G^{0}$ at $T_{2}$ (in $\mathrm{KJ} \mathrm{Mol}^{-1}$ ) respectively are close to [ use $\mathrm{R}=$ 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ]
229339 The reaction quotient $(\mathrm{Q})$ for the reaction from $\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed from right to left if
229340
The equilibrium constant for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 at a certain
temperature. The equilibrium concentrations
of $\mathrm{H}_{2}$ and $\mathrm{HI}$ are $2 \mathrm{~mol} / \mathrm{L}$ and $16 \mathrm{~mol} / \mathrm{L}$ respectively. What is the equilibrium concentration (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathbf{I}_{2}$ ?
229341
The variation of equilibrium constant with temperature is given below:
Temperature Equilibrium constant
$\begin{array}{ll}
\mathrm{T}_{1}=25^{\circ} \mathrm{C} & \mathrm{K}_{1}=10 \\
\mathrm{~T}_{2}=100^{\circ} \mathrm{C} & \mathrm{K}_{2}=100
\end{array}$
The values of $\Delta H^{0}, \Delta G^{0}$ at $T_{1}$ and $\Delta G^{0}$ at $T_{2}$ (in $\mathrm{KJ} \mathrm{Mol}^{-1}$ ) respectively are close to [ use $\mathrm{R}=$ 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ]
229339 The reaction quotient $(\mathrm{Q})$ for the reaction from $\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed from right to left if
229340
The equilibrium constant for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 at a certain
temperature. The equilibrium concentrations
of $\mathrm{H}_{2}$ and $\mathrm{HI}$ are $2 \mathrm{~mol} / \mathrm{L}$ and $16 \mathrm{~mol} / \mathrm{L}$ respectively. What is the equilibrium concentration (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathbf{I}_{2}$ ?
229341
The variation of equilibrium constant with temperature is given below:
Temperature Equilibrium constant
$\begin{array}{ll}
\mathrm{T}_{1}=25^{\circ} \mathrm{C} & \mathrm{K}_{1}=10 \\
\mathrm{~T}_{2}=100^{\circ} \mathrm{C} & \mathrm{K}_{2}=100
\end{array}$
The values of $\Delta H^{0}, \Delta G^{0}$ at $T_{1}$ and $\Delta G^{0}$ at $T_{2}$ (in $\mathrm{KJ} \mathrm{Mol}^{-1}$ ) respectively are close to [ use $\mathrm{R}=$ 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ]