229222
$9.2 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed one litre vessel on heated till the following equilibrium is reached.
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \text { (g) } \rightleftharpoons \mathbf{N O}_{\mathbf{2}}(\mathrm{g})$
at equilibrium $50 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ dissociated. What is the equilibrium constant (in mol $\mathrm{L}^{-1}$ )? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 92)
229222
$9.2 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed one litre vessel on heated till the following equilibrium is reached.
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \text { (g) } \rightleftharpoons \mathbf{N O}_{\mathbf{2}}(\mathrm{g})$
at equilibrium $50 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ dissociated. What is the equilibrium constant (in mol $\mathrm{L}^{-1}$ )? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 92)
229222
$9.2 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed one litre vessel on heated till the following equilibrium is reached.
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \text { (g) } \rightleftharpoons \mathbf{N O}_{\mathbf{2}}(\mathrm{g})$
at equilibrium $50 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ dissociated. What is the equilibrium constant (in mol $\mathrm{L}^{-1}$ )? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 92)
229222
$9.2 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed one litre vessel on heated till the following equilibrium is reached.
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \text { (g) } \rightleftharpoons \mathbf{N O}_{\mathbf{2}}(\mathrm{g})$
at equilibrium $50 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ dissociated. What is the equilibrium constant (in mol $\mathrm{L}^{-1}$ )? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 92)