06. Application of Kp and Kc
Chemical Equilibrium

229213 $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ for thr above reaction at 298 $K, K_{c}$ is found to be $3.0 \times 10^{-59}$. If the concentration of $\mathrm{O}_{2}$ at equilibrium is $0.040 \mathrm{M}$ then concentration of $\mathrm{O}_{3}$ in $\mathrm{M}$ is

1 $1.2 \times 10^{21}$
2 $4.38 \times 10^{-32}$
3 $1.9 \times 10^{-63}$
4 $2.4 \times 10^{31}$
Chemical Equilibrium

229221 Two moles of $\mathrm{PCl}_{5}$ is heated in a closed vessel of $2 \mathrm{~L}$ capacity. When the equilibrium is attained $40 \%$ of it has been found to be dissociated. What is the $K_{c}$ in $\mathrm{mol} / \mathrm{dm}^{3}$ ?

1 0.532
2 0.266
3 0.133
4 0.174
5 0.25
Chemical Equilibrium

229214 4.0 moles of argon and 5.0 moles of $\mathrm{PCl}_{5}$ are introduced into an evacuated flask of 100 litre capacity at $610 \mathrm{~K}$. The system is allowed to equilibrate. At equilibrium, the total pressure of mixture was found to be $6.0 \mathrm{~atm}$. The $K_{\mathrm{p}}$ for the reaction is [Given: $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \mathrm{mo}^{-1}$]

1 2.25
2 6.24
3 12.13
4 15.24
Chemical Equilibrium

229215 For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathbf{p}} / \mathrm{K}_{\mathrm{c}}$ is

1 $(\mathrm{RT})^{1 / 2}$
2 $(\mathrm{RT})^{-1 / 2}$
3 $(\mathrm{RT})$
4 $(\mathrm{RT})^{-}$+
Chemical Equilibrium

229216 For the following gaseous reaction, $\mathbf{H}_{2}+\mathrm{I}_{\mathbf{2}} \rightleftharpoons \mathbf{2 H I}$, the equilibrium constant

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
Chemical Equilibrium

229213 $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ for thr above reaction at 298 $K, K_{c}$ is found to be $3.0 \times 10^{-59}$. If the concentration of $\mathrm{O}_{2}$ at equilibrium is $0.040 \mathrm{M}$ then concentration of $\mathrm{O}_{3}$ in $\mathrm{M}$ is

1 $1.2 \times 10^{21}$
2 $4.38 \times 10^{-32}$
3 $1.9 \times 10^{-63}$
4 $2.4 \times 10^{31}$
Chemical Equilibrium

229221 Two moles of $\mathrm{PCl}_{5}$ is heated in a closed vessel of $2 \mathrm{~L}$ capacity. When the equilibrium is attained $40 \%$ of it has been found to be dissociated. What is the $K_{c}$ in $\mathrm{mol} / \mathrm{dm}^{3}$ ?

1 0.532
2 0.266
3 0.133
4 0.174
5 0.25
Chemical Equilibrium

229214 4.0 moles of argon and 5.0 moles of $\mathrm{PCl}_{5}$ are introduced into an evacuated flask of 100 litre capacity at $610 \mathrm{~K}$. The system is allowed to equilibrate. At equilibrium, the total pressure of mixture was found to be $6.0 \mathrm{~atm}$. The $K_{\mathrm{p}}$ for the reaction is [Given: $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \mathrm{mo}^{-1}$]

1 2.25
2 6.24
3 12.13
4 15.24
Chemical Equilibrium

229215 For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathbf{p}} / \mathrm{K}_{\mathrm{c}}$ is

1 $(\mathrm{RT})^{1 / 2}$
2 $(\mathrm{RT})^{-1 / 2}$
3 $(\mathrm{RT})$
4 $(\mathrm{RT})^{-}$+
Chemical Equilibrium

229216 For the following gaseous reaction, $\mathbf{H}_{2}+\mathrm{I}_{\mathbf{2}} \rightleftharpoons \mathbf{2 H I}$, the equilibrium constant

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
Chemical Equilibrium

229213 $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ for thr above reaction at 298 $K, K_{c}$ is found to be $3.0 \times 10^{-59}$. If the concentration of $\mathrm{O}_{2}$ at equilibrium is $0.040 \mathrm{M}$ then concentration of $\mathrm{O}_{3}$ in $\mathrm{M}$ is

1 $1.2 \times 10^{21}$
2 $4.38 \times 10^{-32}$
3 $1.9 \times 10^{-63}$
4 $2.4 \times 10^{31}$
Chemical Equilibrium

229221 Two moles of $\mathrm{PCl}_{5}$ is heated in a closed vessel of $2 \mathrm{~L}$ capacity. When the equilibrium is attained $40 \%$ of it has been found to be dissociated. What is the $K_{c}$ in $\mathrm{mol} / \mathrm{dm}^{3}$ ?

1 0.532
2 0.266
3 0.133
4 0.174
5 0.25
Chemical Equilibrium

229214 4.0 moles of argon and 5.0 moles of $\mathrm{PCl}_{5}$ are introduced into an evacuated flask of 100 litre capacity at $610 \mathrm{~K}$. The system is allowed to equilibrate. At equilibrium, the total pressure of mixture was found to be $6.0 \mathrm{~atm}$. The $K_{\mathrm{p}}$ for the reaction is [Given: $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \mathrm{mo}^{-1}$]

1 2.25
2 6.24
3 12.13
4 15.24
Chemical Equilibrium

229215 For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathbf{p}} / \mathrm{K}_{\mathrm{c}}$ is

1 $(\mathrm{RT})^{1 / 2}$
2 $(\mathrm{RT})^{-1 / 2}$
3 $(\mathrm{RT})$
4 $(\mathrm{RT})^{-}$+
Chemical Equilibrium

229216 For the following gaseous reaction, $\mathbf{H}_{2}+\mathrm{I}_{\mathbf{2}} \rightleftharpoons \mathbf{2 H I}$, the equilibrium constant

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
Chemical Equilibrium

229213 $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ for thr above reaction at 298 $K, K_{c}$ is found to be $3.0 \times 10^{-59}$. If the concentration of $\mathrm{O}_{2}$ at equilibrium is $0.040 \mathrm{M}$ then concentration of $\mathrm{O}_{3}$ in $\mathrm{M}$ is

1 $1.2 \times 10^{21}$
2 $4.38 \times 10^{-32}$
3 $1.9 \times 10^{-63}$
4 $2.4 \times 10^{31}$
Chemical Equilibrium

229221 Two moles of $\mathrm{PCl}_{5}$ is heated in a closed vessel of $2 \mathrm{~L}$ capacity. When the equilibrium is attained $40 \%$ of it has been found to be dissociated. What is the $K_{c}$ in $\mathrm{mol} / \mathrm{dm}^{3}$ ?

1 0.532
2 0.266
3 0.133
4 0.174
5 0.25
Chemical Equilibrium

229214 4.0 moles of argon and 5.0 moles of $\mathrm{PCl}_{5}$ are introduced into an evacuated flask of 100 litre capacity at $610 \mathrm{~K}$. The system is allowed to equilibrate. At equilibrium, the total pressure of mixture was found to be $6.0 \mathrm{~atm}$. The $K_{\mathrm{p}}$ for the reaction is [Given: $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \mathrm{mo}^{-1}$]

1 2.25
2 6.24
3 12.13
4 15.24
Chemical Equilibrium

229215 For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathbf{p}} / \mathrm{K}_{\mathrm{c}}$ is

1 $(\mathrm{RT})^{1 / 2}$
2 $(\mathrm{RT})^{-1 / 2}$
3 $(\mathrm{RT})$
4 $(\mathrm{RT})^{-}$+
Chemical Equilibrium

229216 For the following gaseous reaction, $\mathbf{H}_{2}+\mathrm{I}_{\mathbf{2}} \rightleftharpoons \mathbf{2 H I}$, the equilibrium constant

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
Chemical Equilibrium

229213 $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$ for thr above reaction at 298 $K, K_{c}$ is found to be $3.0 \times 10^{-59}$. If the concentration of $\mathrm{O}_{2}$ at equilibrium is $0.040 \mathrm{M}$ then concentration of $\mathrm{O}_{3}$ in $\mathrm{M}$ is

1 $1.2 \times 10^{21}$
2 $4.38 \times 10^{-32}$
3 $1.9 \times 10^{-63}$
4 $2.4 \times 10^{31}$
Chemical Equilibrium

229221 Two moles of $\mathrm{PCl}_{5}$ is heated in a closed vessel of $2 \mathrm{~L}$ capacity. When the equilibrium is attained $40 \%$ of it has been found to be dissociated. What is the $K_{c}$ in $\mathrm{mol} / \mathrm{dm}^{3}$ ?

1 0.532
2 0.266
3 0.133
4 0.174
5 0.25
Chemical Equilibrium

229214 4.0 moles of argon and 5.0 moles of $\mathrm{PCl}_{5}$ are introduced into an evacuated flask of 100 litre capacity at $610 \mathrm{~K}$. The system is allowed to equilibrate. At equilibrium, the total pressure of mixture was found to be $6.0 \mathrm{~atm}$. The $K_{\mathrm{p}}$ for the reaction is [Given: $R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \mathrm{mo}^{-1}$]

1 2.25
2 6.24
3 12.13
4 15.24
Chemical Equilibrium

229215 For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathbf{p}} / \mathrm{K}_{\mathrm{c}}$ is

1 $(\mathrm{RT})^{1 / 2}$
2 $(\mathrm{RT})^{-1 / 2}$
3 $(\mathrm{RT})$
4 $(\mathrm{RT})^{-}$+
Chemical Equilibrium

229216 For the following gaseous reaction, $\mathbf{H}_{2}+\mathrm{I}_{\mathbf{2}} \rightleftharpoons \mathbf{2 H I}$, the equilibrium constant

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$