03. Degree of Dissociation
Chemical Equilibrium

229109 Van't Hoff's factors of equimolal solutions of sodium chloride, barium chloride and glucose in water are

1 2,3,0 respectively
2 2, 3, 6 respectively
3 2,3, 4 respectively
4 2,3,1 respectively
Chemical Equilibrium

229110 What will be the degree of ionisation of $0.05 \mathrm{M}$ acetic acid if its $\mathbf{p K}_{\mathrm{a}}$ value is $\mathbf{4 . 7 4}$ ?

1 $0.019 \%$
2 $1.9 \%$
3 $3.0 \%$
4 $4.74 \%$
Chemical Equilibrium

229111 The value of vant Hoff's factor for $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: So, JCECE - 2013, UP CPMT-2014, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{NO}_{3}^{-}$, van't Hoff's factor, $\mathrm{i}=3$, 212. On adding $0.1 \mathrm{M}$ solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Ca}^{2+}\right]$ in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is, $\left[\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}\right.$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$,

1 1
2 2
3 3
4 4
Chemical Equilibrium

229112 Accumulation of Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$, a monobasic acid in tissues leads to pain and a feeling to fatigue. In a $0.10 \mathrm{M}$ aqueous solution, Lactic acid is $3.7 \%$ dissociates. The value of dissociation constant, $K_{\mathbf{a}}$, for this acid will be

1 $1.4 \times 10^{-5}$
2 $1.4 \times 10^{-4}$
3 $3.7 \times 10^{-4}$
4 $2.8 \times 10^{-4}$
Chemical Equilibrium

229113 The degree of ionization of $0.10 \mathrm{M}$ lactic acid is $4.0 \%$

The value of $K_{c}$ is

1 $1.66 \times 10^{-5}$
2 $1.66 \times 10^{-4}$
3 $1.66 \times 10^{-3}$
4 $1.66 \times 10^{-2}$
Chemical Equilibrium

229109 Van't Hoff's factors of equimolal solutions of sodium chloride, barium chloride and glucose in water are

1 2,3,0 respectively
2 2, 3, 6 respectively
3 2,3, 4 respectively
4 2,3,1 respectively
Chemical Equilibrium

229110 What will be the degree of ionisation of $0.05 \mathrm{M}$ acetic acid if its $\mathbf{p K}_{\mathrm{a}}$ value is $\mathbf{4 . 7 4}$ ?

1 $0.019 \%$
2 $1.9 \%$
3 $3.0 \%$
4 $4.74 \%$
Chemical Equilibrium

229111 The value of vant Hoff's factor for $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: So, JCECE - 2013, UP CPMT-2014, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{NO}_{3}^{-}$, van't Hoff's factor, $\mathrm{i}=3$, 212. On adding $0.1 \mathrm{M}$ solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Ca}^{2+}\right]$ in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is, $\left[\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}\right.$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$,

1 1
2 2
3 3
4 4
Chemical Equilibrium

229112 Accumulation of Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$, a monobasic acid in tissues leads to pain and a feeling to fatigue. In a $0.10 \mathrm{M}$ aqueous solution, Lactic acid is $3.7 \%$ dissociates. The value of dissociation constant, $K_{\mathbf{a}}$, for this acid will be

1 $1.4 \times 10^{-5}$
2 $1.4 \times 10^{-4}$
3 $3.7 \times 10^{-4}$
4 $2.8 \times 10^{-4}$
Chemical Equilibrium

229113 The degree of ionization of $0.10 \mathrm{M}$ lactic acid is $4.0 \%$

The value of $K_{c}$ is

1 $1.66 \times 10^{-5}$
2 $1.66 \times 10^{-4}$
3 $1.66 \times 10^{-3}$
4 $1.66 \times 10^{-2}$
Chemical Equilibrium

229109 Van't Hoff's factors of equimolal solutions of sodium chloride, barium chloride and glucose in water are

1 2,3,0 respectively
2 2, 3, 6 respectively
3 2,3, 4 respectively
4 2,3,1 respectively
Chemical Equilibrium

229110 What will be the degree of ionisation of $0.05 \mathrm{M}$ acetic acid if its $\mathbf{p K}_{\mathrm{a}}$ value is $\mathbf{4 . 7 4}$ ?

1 $0.019 \%$
2 $1.9 \%$
3 $3.0 \%$
4 $4.74 \%$
Chemical Equilibrium

229111 The value of vant Hoff's factor for $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: So, JCECE - 2013, UP CPMT-2014, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{NO}_{3}^{-}$, van't Hoff's factor, $\mathrm{i}=3$, 212. On adding $0.1 \mathrm{M}$ solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Ca}^{2+}\right]$ in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is, $\left[\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}\right.$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$,

1 1
2 2
3 3
4 4
Chemical Equilibrium

229112 Accumulation of Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$, a monobasic acid in tissues leads to pain and a feeling to fatigue. In a $0.10 \mathrm{M}$ aqueous solution, Lactic acid is $3.7 \%$ dissociates. The value of dissociation constant, $K_{\mathbf{a}}$, for this acid will be

1 $1.4 \times 10^{-5}$
2 $1.4 \times 10^{-4}$
3 $3.7 \times 10^{-4}$
4 $2.8 \times 10^{-4}$
Chemical Equilibrium

229113 The degree of ionization of $0.10 \mathrm{M}$ lactic acid is $4.0 \%$

The value of $K_{c}$ is

1 $1.66 \times 10^{-5}$
2 $1.66 \times 10^{-4}$
3 $1.66 \times 10^{-3}$
4 $1.66 \times 10^{-2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229109 Van't Hoff's factors of equimolal solutions of sodium chloride, barium chloride and glucose in water are

1 2,3,0 respectively
2 2, 3, 6 respectively
3 2,3, 4 respectively
4 2,3,1 respectively
Chemical Equilibrium

229110 What will be the degree of ionisation of $0.05 \mathrm{M}$ acetic acid if its $\mathbf{p K}_{\mathrm{a}}$ value is $\mathbf{4 . 7 4}$ ?

1 $0.019 \%$
2 $1.9 \%$
3 $3.0 \%$
4 $4.74 \%$
Chemical Equilibrium

229111 The value of vant Hoff's factor for $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: So, JCECE - 2013, UP CPMT-2014, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{NO}_{3}^{-}$, van't Hoff's factor, $\mathrm{i}=3$, 212. On adding $0.1 \mathrm{M}$ solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Ca}^{2+}\right]$ in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is, $\left[\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}\right.$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$,

1 1
2 2
3 3
4 4
Chemical Equilibrium

229112 Accumulation of Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$, a monobasic acid in tissues leads to pain and a feeling to fatigue. In a $0.10 \mathrm{M}$ aqueous solution, Lactic acid is $3.7 \%$ dissociates. The value of dissociation constant, $K_{\mathbf{a}}$, for this acid will be

1 $1.4 \times 10^{-5}$
2 $1.4 \times 10^{-4}$
3 $3.7 \times 10^{-4}$
4 $2.8 \times 10^{-4}$
Chemical Equilibrium

229113 The degree of ionization of $0.10 \mathrm{M}$ lactic acid is $4.0 \%$

The value of $K_{c}$ is

1 $1.66 \times 10^{-5}$
2 $1.66 \times 10^{-4}$
3 $1.66 \times 10^{-3}$
4 $1.66 \times 10^{-2}$
Chemical Equilibrium

229109 Van't Hoff's factors of equimolal solutions of sodium chloride, barium chloride and glucose in water are

1 2,3,0 respectively
2 2, 3, 6 respectively
3 2,3, 4 respectively
4 2,3,1 respectively
Chemical Equilibrium

229110 What will be the degree of ionisation of $0.05 \mathrm{M}$ acetic acid if its $\mathbf{p K}_{\mathrm{a}}$ value is $\mathbf{4 . 7 4}$ ?

1 $0.019 \%$
2 $1.9 \%$
3 $3.0 \%$
4 $4.74 \%$
Chemical Equilibrium

229111 The value of vant Hoff's factor for $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: So, JCECE - 2013, UP CPMT-2014, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Hg}_{2}^{2+}+2 \mathrm{NO}_{3}^{-}$, van't Hoff's factor, $\mathrm{i}=3$, 212. On adding $0.1 \mathrm{M}$ solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Ca}^{2+}\right]$ in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is, $\left[\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}\right.$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$,

1 1
2 2
3 3
4 4
Chemical Equilibrium

229112 Accumulation of Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$, a monobasic acid in tissues leads to pain and a feeling to fatigue. In a $0.10 \mathrm{M}$ aqueous solution, Lactic acid is $3.7 \%$ dissociates. The value of dissociation constant, $K_{\mathbf{a}}$, for this acid will be

1 $1.4 \times 10^{-5}$
2 $1.4 \times 10^{-4}$
3 $3.7 \times 10^{-4}$
4 $2.8 \times 10^{-4}$
Chemical Equilibrium

229113 The degree of ionization of $0.10 \mathrm{M}$ lactic acid is $4.0 \%$

The value of $K_{c}$ is

1 $1.66 \times 10^{-5}$
2 $1.66 \times 10^{-4}$
3 $1.66 \times 10^{-3}$
4 $1.66 \times 10^{-2}$