273063
For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
1 zero
2 positive
3 infinite
4 negative
Explanation:
For spontaneous reaction free energy change is negative. $\Delta \mathrm{G}=-\mathrm{nFE}$ Where $\mathrm{F}=$ Faraday constant $\mathrm{E}=\mathrm{emf}$ of the cell
[CGPET-2007]
Thermodynamics
273064
For a reaction at equilibrium,
1 $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}=0$
2 $\Delta \mathrm{G}=0$ but not $\Delta \mathrm{G}^{\circ}$
3 $\Delta \mathrm{G}^{\circ}=0$ but not $\Delta \mathrm{G}$
As we know, Gibb's free change for any reaction in equilibrium condition is 0 i.e. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{nRT} \ln \mathrm{K}$ or $\Delta \mathrm{G}^{\circ}=-\mathrm{nRT} \ln \mathrm{K}$
SRMJEEE - 2008
Thermodynamics
273066
The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant $(K)$ as
The relation between standard free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ and equilibrium constant $(\mathrm{K})$ is given below- $\Delta \mathrm{G}^{\circ}=-2.303 \text { RT } \log \mathrm{K}$
Manipal-2018
Thermodynamics
273067
For a process to occur spontaneously
1 $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ must be negative
2 $(\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S})$ must be negative
3 $\Delta \mathrm{H}$ must be negative
4 $\Delta \mathrm{S}$ must be negative
Explanation:
For a process to occurs spontaneously$\Delta \mathrm{G}$ Must be Negative $\begin{aligned} & \Delta \mathrm{G}<\mathrm{O} \text { (Negative) } \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \end{aligned}$ If $\Delta \mathrm{G}=$ Negative Then, $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}) \text { must be Negative. }$
Assam CEE-2014
Thermodynamics
273072
Cell reaction is spontaneous when
1 $\Delta \mathrm{G}^{\circ}$ is negative
2 $\Delta \mathrm{G}^{\circ}$ is positive
3 $\Delta \mathrm{E}_{\mathrm{red}}^{\circ}$ is positive
4 $\Delta \mathrm{E}_{\text {red }}^{\circ}$ is negative
Explanation:
$\Delta \mathrm{G}=-\mathrm{NF} \mathrm{E}_{\text {cell }}$ $\mathrm{E}_{\text {cell }}$ is an intensive property but $\Delta \mathrm{G}$ is an extensive property. If the electrode potential is assumed to be positive then, When $\Delta \mathrm{G}<0$, the spontaneous cell reaction. When $\Delta \mathrm{G}>0$, the non-spontaneous cell reaction.
273063
For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
1 zero
2 positive
3 infinite
4 negative
Explanation:
For spontaneous reaction free energy change is negative. $\Delta \mathrm{G}=-\mathrm{nFE}$ Where $\mathrm{F}=$ Faraday constant $\mathrm{E}=\mathrm{emf}$ of the cell
[CGPET-2007]
Thermodynamics
273064
For a reaction at equilibrium,
1 $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}=0$
2 $\Delta \mathrm{G}=0$ but not $\Delta \mathrm{G}^{\circ}$
3 $\Delta \mathrm{G}^{\circ}=0$ but not $\Delta \mathrm{G}$
As we know, Gibb's free change for any reaction in equilibrium condition is 0 i.e. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{nRT} \ln \mathrm{K}$ or $\Delta \mathrm{G}^{\circ}=-\mathrm{nRT} \ln \mathrm{K}$
SRMJEEE - 2008
Thermodynamics
273066
The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant $(K)$ as
The relation between standard free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ and equilibrium constant $(\mathrm{K})$ is given below- $\Delta \mathrm{G}^{\circ}=-2.303 \text { RT } \log \mathrm{K}$
Manipal-2018
Thermodynamics
273067
For a process to occur spontaneously
1 $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ must be negative
2 $(\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S})$ must be negative
3 $\Delta \mathrm{H}$ must be negative
4 $\Delta \mathrm{S}$ must be negative
Explanation:
For a process to occurs spontaneously$\Delta \mathrm{G}$ Must be Negative $\begin{aligned} & \Delta \mathrm{G}<\mathrm{O} \text { (Negative) } \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \end{aligned}$ If $\Delta \mathrm{G}=$ Negative Then, $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}) \text { must be Negative. }$
Assam CEE-2014
Thermodynamics
273072
Cell reaction is spontaneous when
1 $\Delta \mathrm{G}^{\circ}$ is negative
2 $\Delta \mathrm{G}^{\circ}$ is positive
3 $\Delta \mathrm{E}_{\mathrm{red}}^{\circ}$ is positive
4 $\Delta \mathrm{E}_{\text {red }}^{\circ}$ is negative
Explanation:
$\Delta \mathrm{G}=-\mathrm{NF} \mathrm{E}_{\text {cell }}$ $\mathrm{E}_{\text {cell }}$ is an intensive property but $\Delta \mathrm{G}$ is an extensive property. If the electrode potential is assumed to be positive then, When $\Delta \mathrm{G}<0$, the spontaneous cell reaction. When $\Delta \mathrm{G}>0$, the non-spontaneous cell reaction.
273063
For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
1 zero
2 positive
3 infinite
4 negative
Explanation:
For spontaneous reaction free energy change is negative. $\Delta \mathrm{G}=-\mathrm{nFE}$ Where $\mathrm{F}=$ Faraday constant $\mathrm{E}=\mathrm{emf}$ of the cell
[CGPET-2007]
Thermodynamics
273064
For a reaction at equilibrium,
1 $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}=0$
2 $\Delta \mathrm{G}=0$ but not $\Delta \mathrm{G}^{\circ}$
3 $\Delta \mathrm{G}^{\circ}=0$ but not $\Delta \mathrm{G}$
As we know, Gibb's free change for any reaction in equilibrium condition is 0 i.e. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{nRT} \ln \mathrm{K}$ or $\Delta \mathrm{G}^{\circ}=-\mathrm{nRT} \ln \mathrm{K}$
SRMJEEE - 2008
Thermodynamics
273066
The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant $(K)$ as
The relation between standard free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ and equilibrium constant $(\mathrm{K})$ is given below- $\Delta \mathrm{G}^{\circ}=-2.303 \text { RT } \log \mathrm{K}$
Manipal-2018
Thermodynamics
273067
For a process to occur spontaneously
1 $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ must be negative
2 $(\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S})$ must be negative
3 $\Delta \mathrm{H}$ must be negative
4 $\Delta \mathrm{S}$ must be negative
Explanation:
For a process to occurs spontaneously$\Delta \mathrm{G}$ Must be Negative $\begin{aligned} & \Delta \mathrm{G}<\mathrm{O} \text { (Negative) } \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \end{aligned}$ If $\Delta \mathrm{G}=$ Negative Then, $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}) \text { must be Negative. }$
Assam CEE-2014
Thermodynamics
273072
Cell reaction is spontaneous when
1 $\Delta \mathrm{G}^{\circ}$ is negative
2 $\Delta \mathrm{G}^{\circ}$ is positive
3 $\Delta \mathrm{E}_{\mathrm{red}}^{\circ}$ is positive
4 $\Delta \mathrm{E}_{\text {red }}^{\circ}$ is negative
Explanation:
$\Delta \mathrm{G}=-\mathrm{NF} \mathrm{E}_{\text {cell }}$ $\mathrm{E}_{\text {cell }}$ is an intensive property but $\Delta \mathrm{G}$ is an extensive property. If the electrode potential is assumed to be positive then, When $\Delta \mathrm{G}<0$, the spontaneous cell reaction. When $\Delta \mathrm{G}>0$, the non-spontaneous cell reaction.
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Thermodynamics
273063
For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
1 zero
2 positive
3 infinite
4 negative
Explanation:
For spontaneous reaction free energy change is negative. $\Delta \mathrm{G}=-\mathrm{nFE}$ Where $\mathrm{F}=$ Faraday constant $\mathrm{E}=\mathrm{emf}$ of the cell
[CGPET-2007]
Thermodynamics
273064
For a reaction at equilibrium,
1 $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}=0$
2 $\Delta \mathrm{G}=0$ but not $\Delta \mathrm{G}^{\circ}$
3 $\Delta \mathrm{G}^{\circ}=0$ but not $\Delta \mathrm{G}$
As we know, Gibb's free change for any reaction in equilibrium condition is 0 i.e. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{nRT} \ln \mathrm{K}$ or $\Delta \mathrm{G}^{\circ}=-\mathrm{nRT} \ln \mathrm{K}$
SRMJEEE - 2008
Thermodynamics
273066
The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant $(K)$ as
The relation between standard free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ and equilibrium constant $(\mathrm{K})$ is given below- $\Delta \mathrm{G}^{\circ}=-2.303 \text { RT } \log \mathrm{K}$
Manipal-2018
Thermodynamics
273067
For a process to occur spontaneously
1 $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ must be negative
2 $(\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S})$ must be negative
3 $\Delta \mathrm{H}$ must be negative
4 $\Delta \mathrm{S}$ must be negative
Explanation:
For a process to occurs spontaneously$\Delta \mathrm{G}$ Must be Negative $\begin{aligned} & \Delta \mathrm{G}<\mathrm{O} \text { (Negative) } \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \end{aligned}$ If $\Delta \mathrm{G}=$ Negative Then, $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}) \text { must be Negative. }$
Assam CEE-2014
Thermodynamics
273072
Cell reaction is spontaneous when
1 $\Delta \mathrm{G}^{\circ}$ is negative
2 $\Delta \mathrm{G}^{\circ}$ is positive
3 $\Delta \mathrm{E}_{\mathrm{red}}^{\circ}$ is positive
4 $\Delta \mathrm{E}_{\text {red }}^{\circ}$ is negative
Explanation:
$\Delta \mathrm{G}=-\mathrm{NF} \mathrm{E}_{\text {cell }}$ $\mathrm{E}_{\text {cell }}$ is an intensive property but $\Delta \mathrm{G}$ is an extensive property. If the electrode potential is assumed to be positive then, When $\Delta \mathrm{G}<0$, the spontaneous cell reaction. When $\Delta \mathrm{G}>0$, the non-spontaneous cell reaction.
273063
For a cell reaction to be spontaneous, the standard free energy change of the reaction must be
1 zero
2 positive
3 infinite
4 negative
Explanation:
For spontaneous reaction free energy change is negative. $\Delta \mathrm{G}=-\mathrm{nFE}$ Where $\mathrm{F}=$ Faraday constant $\mathrm{E}=\mathrm{emf}$ of the cell
[CGPET-2007]
Thermodynamics
273064
For a reaction at equilibrium,
1 $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}=0$
2 $\Delta \mathrm{G}=0$ but not $\Delta \mathrm{G}^{\circ}$
3 $\Delta \mathrm{G}^{\circ}=0$ but not $\Delta \mathrm{G}$
As we know, Gibb's free change for any reaction in equilibrium condition is 0 i.e. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{nRT} \ln \mathrm{K}$ or $\Delta \mathrm{G}^{\circ}=-\mathrm{nRT} \ln \mathrm{K}$
SRMJEEE - 2008
Thermodynamics
273066
The standard free energy change $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant $(K)$ as
The relation between standard free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ and equilibrium constant $(\mathrm{K})$ is given below- $\Delta \mathrm{G}^{\circ}=-2.303 \text { RT } \log \mathrm{K}$
Manipal-2018
Thermodynamics
273067
For a process to occur spontaneously
1 $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ must be negative
2 $(\Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{S})$ must be negative
3 $\Delta \mathrm{H}$ must be negative
4 $\Delta \mathrm{S}$ must be negative
Explanation:
For a process to occurs spontaneously$\Delta \mathrm{G}$ Must be Negative $\begin{aligned} & \Delta \mathrm{G}<\mathrm{O} \text { (Negative) } \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \end{aligned}$ If $\Delta \mathrm{G}=$ Negative Then, $(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}) \text { must be Negative. }$
Assam CEE-2014
Thermodynamics
273072
Cell reaction is spontaneous when
1 $\Delta \mathrm{G}^{\circ}$ is negative
2 $\Delta \mathrm{G}^{\circ}$ is positive
3 $\Delta \mathrm{E}_{\mathrm{red}}^{\circ}$ is positive
4 $\Delta \mathrm{E}_{\text {red }}^{\circ}$ is negative
Explanation:
$\Delta \mathrm{G}=-\mathrm{NF} \mathrm{E}_{\text {cell }}$ $\mathrm{E}_{\text {cell }}$ is an intensive property but $\Delta \mathrm{G}$ is an extensive property. If the electrode potential is assumed to be positive then, When $\Delta \mathrm{G}<0$, the spontaneous cell reaction. When $\Delta \mathrm{G}>0$, the non-spontaneous cell reaction.