05. Gibbs Energy Change and Equilibrium
Thermodynamics

273060 A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is

1 endothermic, $\Delta \mathrm{H}=36.06 \mathrm{~kJ}$
2 exothermic, $\Delta \mathrm{H}=-36.06 \mathrm{~kJ}$
3 endothermic, $\Delta \mathrm{H}=60.12 \mathrm{~kJ}$
4 exothermic, $\Delta \mathrm{H}=-60.12 \mathrm{~kJ}$
Thermodynamics

273061 Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:

1 $750 \mathrm{~K}$
2 $1000 \mathrm{~K}$
3 $1250 \mathrm{~K}$
4 $500 \mathrm{~K}$
Thermodynamics

273062 The standard Gibb's free energy change, $\Delta \mathbf{G}^{\circ}$ is related to equilibrium constant, $K_p$ as

1 $\mathrm{K}_{\mathrm{p}}=-\mathrm{RT} \ln \Delta \mathrm{G}^{\circ}$
2 $\mathrm{K}_{\mathrm{p}}=\left[\frac{\mathrm{e}}{\mathrm{RT}}\right]^{\Delta \mathrm{G}^{\circ}}$
3 $\mathrm{K}_{\mathrm{p}}=-\frac{\Delta \mathrm{G}}{\mathrm{RT}}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G} / \mathrm{RT}}$
Thermodynamics

273068 For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be

1 $-89.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-890 \mathrm{~J} \mathrm{~mol}^{-1}$
3 $-44.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-98.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273060 A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is

1 endothermic, $\Delta \mathrm{H}=36.06 \mathrm{~kJ}$
2 exothermic, $\Delta \mathrm{H}=-36.06 \mathrm{~kJ}$
3 endothermic, $\Delta \mathrm{H}=60.12 \mathrm{~kJ}$
4 exothermic, $\Delta \mathrm{H}=-60.12 \mathrm{~kJ}$
Thermodynamics

273061 Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:

1 $750 \mathrm{~K}$
2 $1000 \mathrm{~K}$
3 $1250 \mathrm{~K}$
4 $500 \mathrm{~K}$
Thermodynamics

273062 The standard Gibb's free energy change, $\Delta \mathbf{G}^{\circ}$ is related to equilibrium constant, $K_p$ as

1 $\mathrm{K}_{\mathrm{p}}=-\mathrm{RT} \ln \Delta \mathrm{G}^{\circ}$
2 $\mathrm{K}_{\mathrm{p}}=\left[\frac{\mathrm{e}}{\mathrm{RT}}\right]^{\Delta \mathrm{G}^{\circ}}$
3 $\mathrm{K}_{\mathrm{p}}=-\frac{\Delta \mathrm{G}}{\mathrm{RT}}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G} / \mathrm{RT}}$
Thermodynamics

273068 For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be

1 $-89.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-890 \mathrm{~J} \mathrm{~mol}^{-1}$
3 $-44.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-98.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273060 A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is

1 endothermic, $\Delta \mathrm{H}=36.06 \mathrm{~kJ}$
2 exothermic, $\Delta \mathrm{H}=-36.06 \mathrm{~kJ}$
3 endothermic, $\Delta \mathrm{H}=60.12 \mathrm{~kJ}$
4 exothermic, $\Delta \mathrm{H}=-60.12 \mathrm{~kJ}$
Thermodynamics

273061 Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:

1 $750 \mathrm{~K}$
2 $1000 \mathrm{~K}$
3 $1250 \mathrm{~K}$
4 $500 \mathrm{~K}$
Thermodynamics

273062 The standard Gibb's free energy change, $\Delta \mathbf{G}^{\circ}$ is related to equilibrium constant, $K_p$ as

1 $\mathrm{K}_{\mathrm{p}}=-\mathrm{RT} \ln \Delta \mathrm{G}^{\circ}$
2 $\mathrm{K}_{\mathrm{p}}=\left[\frac{\mathrm{e}}{\mathrm{RT}}\right]^{\Delta \mathrm{G}^{\circ}}$
3 $\mathrm{K}_{\mathrm{p}}=-\frac{\Delta \mathrm{G}}{\mathrm{RT}}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G} / \mathrm{RT}}$
Thermodynamics

273068 For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be

1 $-89.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-890 \mathrm{~J} \mathrm{~mol}^{-1}$
3 $-44.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-98.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273060 A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is

1 endothermic, $\Delta \mathrm{H}=36.06 \mathrm{~kJ}$
2 exothermic, $\Delta \mathrm{H}=-36.06 \mathrm{~kJ}$
3 endothermic, $\Delta \mathrm{H}=60.12 \mathrm{~kJ}$
4 exothermic, $\Delta \mathrm{H}=-60.12 \mathrm{~kJ}$
Thermodynamics

273061 Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:

1 $750 \mathrm{~K}$
2 $1000 \mathrm{~K}$
3 $1250 \mathrm{~K}$
4 $500 \mathrm{~K}$
Thermodynamics

273062 The standard Gibb's free energy change, $\Delta \mathbf{G}^{\circ}$ is related to equilibrium constant, $K_p$ as

1 $\mathrm{K}_{\mathrm{p}}=-\mathrm{RT} \ln \Delta \mathrm{G}^{\circ}$
2 $\mathrm{K}_{\mathrm{p}}=\left[\frac{\mathrm{e}}{\mathrm{RT}}\right]^{\Delta \mathrm{G}^{\circ}}$
3 $\mathrm{K}_{\mathrm{p}}=-\frac{\Delta \mathrm{G}}{\mathrm{RT}}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G} / \mathrm{RT}}$
Thermodynamics

273068 For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be

1 $-89.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-890 \mathrm{~J} \mathrm{~mol}^{-1}$
3 $-44.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-98.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$