273060
A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is
Given, For non spontaneous reaction $\Delta \mathrm{G}=+\mathrm{ve}, \quad \Delta \mathrm{S}=121 \mathrm{JK}^{-1}, \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ $\Delta \mathrm{G}=+\mathrm{ve}$, Hence the reaction is endothermic. The minimum value of $\Delta \mathrm{H}$ can be obtained by putting $\Delta \mathrm{G}=0$ $\begin{aligned} \therefore \quad \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{H} & =298 \times 121 \\ \Delta \mathrm{H} & =36.06 \mathrm{~kJ} . \end{aligned}$
2017
Thermodynamics
273061
Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:
According to Gibb's free energy. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$ For equilibrium condition $\Delta \mathrm{G}=0$ $\begin{aligned} & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}} \\ & \Rightarrow \ln \mathrm{K}_{\mathrm{p}}=\frac{-\Delta \mathrm{G}^{\circ}}{\mathrm{RT}} \Rightarrow \mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G}^{\circ} / \mathrm{RT}} \end{aligned}$ $\Delta \mathrm{G}^{\circ}=$ Standard change in Gibb's free energy $\mathrm{K}_{\mathrm{p}}=$ Equilibrium constant $\mathrm{R}=$ Universal gas constant $\mathrm{T}=$ Temperature in Kelvin
VITEEE- 2010
Thermodynamics
273068
For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be
273060
A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is
Given, For non spontaneous reaction $\Delta \mathrm{G}=+\mathrm{ve}, \quad \Delta \mathrm{S}=121 \mathrm{JK}^{-1}, \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ $\Delta \mathrm{G}=+\mathrm{ve}$, Hence the reaction is endothermic. The minimum value of $\Delta \mathrm{H}$ can be obtained by putting $\Delta \mathrm{G}=0$ $\begin{aligned} \therefore \quad \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{H} & =298 \times 121 \\ \Delta \mathrm{H} & =36.06 \mathrm{~kJ} . \end{aligned}$
2017
Thermodynamics
273061
Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:
According to Gibb's free energy. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$ For equilibrium condition $\Delta \mathrm{G}=0$ $\begin{aligned} & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}} \\ & \Rightarrow \ln \mathrm{K}_{\mathrm{p}}=\frac{-\Delta \mathrm{G}^{\circ}}{\mathrm{RT}} \Rightarrow \mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G}^{\circ} / \mathrm{RT}} \end{aligned}$ $\Delta \mathrm{G}^{\circ}=$ Standard change in Gibb's free energy $\mathrm{K}_{\mathrm{p}}=$ Equilibrium constant $\mathrm{R}=$ Universal gas constant $\mathrm{T}=$ Temperature in Kelvin
VITEEE- 2010
Thermodynamics
273068
For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be
273060
A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is
Given, For non spontaneous reaction $\Delta \mathrm{G}=+\mathrm{ve}, \quad \Delta \mathrm{S}=121 \mathrm{JK}^{-1}, \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ $\Delta \mathrm{G}=+\mathrm{ve}$, Hence the reaction is endothermic. The minimum value of $\Delta \mathrm{H}$ can be obtained by putting $\Delta \mathrm{G}=0$ $\begin{aligned} \therefore \quad \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{H} & =298 \times 121 \\ \Delta \mathrm{H} & =36.06 \mathrm{~kJ} . \end{aligned}$
2017
Thermodynamics
273061
Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:
According to Gibb's free energy. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$ For equilibrium condition $\Delta \mathrm{G}=0$ $\begin{aligned} & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}} \\ & \Rightarrow \ln \mathrm{K}_{\mathrm{p}}=\frac{-\Delta \mathrm{G}^{\circ}}{\mathrm{RT}} \Rightarrow \mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G}^{\circ} / \mathrm{RT}} \end{aligned}$ $\Delta \mathrm{G}^{\circ}=$ Standard change in Gibb's free energy $\mathrm{K}_{\mathrm{p}}=$ Equilibrium constant $\mathrm{R}=$ Universal gas constant $\mathrm{T}=$ Temperature in Kelvin
VITEEE- 2010
Thermodynamics
273068
For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be
273060
A certain reaction is non spontaneous at $298 \mathrm{~K}$. The entropy change during the reaction is $\mathbf{1 2 1}$ $\mathrm{JK}^{-1}$. Is the reaction is endothermic or exothermic ? The minimum value of $\Delta H$ for the reaction is
Given, For non spontaneous reaction $\Delta \mathrm{G}=+\mathrm{ve}, \quad \Delta \mathrm{S}=121 \mathrm{JK}^{-1}, \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ $\Delta \mathrm{G}=+\mathrm{ve}$, Hence the reaction is endothermic. The minimum value of $\Delta \mathrm{H}$ can be obtained by putting $\Delta \mathrm{G}=0$ $\begin{aligned} \therefore \quad \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{H} & =298 \times 121 \\ \Delta \mathrm{H} & =36.06 \mathrm{~kJ} . \end{aligned}$
2017
Thermodynamics
273061
Standard entropies of $X_2, Y_2$ and $X_3$ are 60 , 30 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_2+\frac{3}{2} Y_2 \square \quad X Y_3, \Delta H=-30 \mathrm{~kJ} \quad$ to be at equilibrium, the temperature should be:
According to Gibb's free energy. $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$ For equilibrium condition $\Delta \mathrm{G}=0$ $\begin{aligned} & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}} \\ & \Rightarrow \ln \mathrm{K}_{\mathrm{p}}=\frac{-\Delta \mathrm{G}^{\circ}}{\mathrm{RT}} \Rightarrow \mathrm{K}_{\mathrm{p}}=\mathrm{e}^{-\Delta \mathrm{G}^{\circ} / \mathrm{RT}} \end{aligned}$ $\Delta \mathrm{G}^{\circ}=$ Standard change in Gibb's free energy $\mathrm{K}_{\mathrm{p}}=$ Equilibrium constant $\mathrm{R}=$ Universal gas constant $\mathrm{T}=$ Temperature in Kelvin
VITEEE- 2010
Thermodynamics
273068
For the reduction of $\mathrm{Ag}^{+}$ions with copper metal the Standard cell potential was found to be $0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibb's free energy will be