05. Gibbs Energy Change and Equilibrium
Thermodynamics

273082 The incorrect match in the following is

1 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}>1$
2 $\Delta \mathrm{G}^{\circ}=0, \mathrm{~K}=1$
3 $\Delta \mathrm{G}^{\circ}>0, \mathrm{~K}<1$
4 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}<1$
Thermodynamics

273053 Standard entropies of $X_2, Y_2$ and $X Y_3$ are 60 , 40 and $50 / \mathrm{K} /$ mol respectively. At what temperature the following reaction will be at equilibrium.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{Y}_{\mathbf{2}}$ ? $\mathbf{X Y}_3, \Delta \mathbf{H}=-\mathbf{3 0} \mathrm{kJ}$

1 $500 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $1000 \mathrm{~K}$
4 $1250 \mathrm{~K}$
Thermodynamics

273054 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 0.36
Thermodynamics

273056 The standard enthalpy of the decomposition of $\mathrm{N}_2 \mathrm{O}_4$ to $\mathrm{NO}_2$ is $58.04 \mathrm{~kJ}$ and standard entropy of this reaction is $176.7 \mathrm{~J} / \mathrm{K}$. Therefore the standard free energy changes for this reaction at $25^{\circ} \mathrm{C}$ is

1 $-5.39 \mathrm{~kJ}$
2 $539 \mathrm{~kJ}$
3 $5.39 \mathrm{~kJ}$
4 $-539 \mathrm{~kJ}$
Thermodynamics

273057 The equilibrium constant of a reaction is 0.008 at $298 \mathrm{~K}$. The standard free energy change of the reaction at the same temperature is

1 $+11.96 \mathrm{~kJ}$
2 $-11.96 \mathrm{~kJ}$
3 $-5.43 \mathrm{~kJ}$
4 $-8.46 \mathrm{~kJ}$
Thermodynamics

273082 The incorrect match in the following is

1 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}>1$
2 $\Delta \mathrm{G}^{\circ}=0, \mathrm{~K}=1$
3 $\Delta \mathrm{G}^{\circ}>0, \mathrm{~K}<1$
4 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}<1$
Thermodynamics

273053 Standard entropies of $X_2, Y_2$ and $X Y_3$ are 60 , 40 and $50 / \mathrm{K} /$ mol respectively. At what temperature the following reaction will be at equilibrium.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{Y}_{\mathbf{2}}$ ? $\mathbf{X Y}_3, \Delta \mathbf{H}=-\mathbf{3 0} \mathrm{kJ}$

1 $500 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $1000 \mathrm{~K}$
4 $1250 \mathrm{~K}$
Thermodynamics

273054 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 0.36
Thermodynamics

273056 The standard enthalpy of the decomposition of $\mathrm{N}_2 \mathrm{O}_4$ to $\mathrm{NO}_2$ is $58.04 \mathrm{~kJ}$ and standard entropy of this reaction is $176.7 \mathrm{~J} / \mathrm{K}$. Therefore the standard free energy changes for this reaction at $25^{\circ} \mathrm{C}$ is

1 $-5.39 \mathrm{~kJ}$
2 $539 \mathrm{~kJ}$
3 $5.39 \mathrm{~kJ}$
4 $-539 \mathrm{~kJ}$
Thermodynamics

273057 The equilibrium constant of a reaction is 0.008 at $298 \mathrm{~K}$. The standard free energy change of the reaction at the same temperature is

1 $+11.96 \mathrm{~kJ}$
2 $-11.96 \mathrm{~kJ}$
3 $-5.43 \mathrm{~kJ}$
4 $-8.46 \mathrm{~kJ}$
Thermodynamics

273082 The incorrect match in the following is

1 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}>1$
2 $\Delta \mathrm{G}^{\circ}=0, \mathrm{~K}=1$
3 $\Delta \mathrm{G}^{\circ}>0, \mathrm{~K}<1$
4 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}<1$
Thermodynamics

273053 Standard entropies of $X_2, Y_2$ and $X Y_3$ are 60 , 40 and $50 / \mathrm{K} /$ mol respectively. At what temperature the following reaction will be at equilibrium.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{Y}_{\mathbf{2}}$ ? $\mathbf{X Y}_3, \Delta \mathbf{H}=-\mathbf{3 0} \mathrm{kJ}$

1 $500 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $1000 \mathrm{~K}$
4 $1250 \mathrm{~K}$
Thermodynamics

273054 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 0.36
Thermodynamics

273056 The standard enthalpy of the decomposition of $\mathrm{N}_2 \mathrm{O}_4$ to $\mathrm{NO}_2$ is $58.04 \mathrm{~kJ}$ and standard entropy of this reaction is $176.7 \mathrm{~J} / \mathrm{K}$. Therefore the standard free energy changes for this reaction at $25^{\circ} \mathrm{C}$ is

1 $-5.39 \mathrm{~kJ}$
2 $539 \mathrm{~kJ}$
3 $5.39 \mathrm{~kJ}$
4 $-539 \mathrm{~kJ}$
Thermodynamics

273057 The equilibrium constant of a reaction is 0.008 at $298 \mathrm{~K}$. The standard free energy change of the reaction at the same temperature is

1 $+11.96 \mathrm{~kJ}$
2 $-11.96 \mathrm{~kJ}$
3 $-5.43 \mathrm{~kJ}$
4 $-8.46 \mathrm{~kJ}$
Thermodynamics

273082 The incorrect match in the following is

1 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}>1$
2 $\Delta \mathrm{G}^{\circ}=0, \mathrm{~K}=1$
3 $\Delta \mathrm{G}^{\circ}>0, \mathrm{~K}<1$
4 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}<1$
Thermodynamics

273053 Standard entropies of $X_2, Y_2$ and $X Y_3$ are 60 , 40 and $50 / \mathrm{K} /$ mol respectively. At what temperature the following reaction will be at equilibrium.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{Y}_{\mathbf{2}}$ ? $\mathbf{X Y}_3, \Delta \mathbf{H}=-\mathbf{3 0} \mathrm{kJ}$

1 $500 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $1000 \mathrm{~K}$
4 $1250 \mathrm{~K}$
Thermodynamics

273054 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 0.36
Thermodynamics

273056 The standard enthalpy of the decomposition of $\mathrm{N}_2 \mathrm{O}_4$ to $\mathrm{NO}_2$ is $58.04 \mathrm{~kJ}$ and standard entropy of this reaction is $176.7 \mathrm{~J} / \mathrm{K}$. Therefore the standard free energy changes for this reaction at $25^{\circ} \mathrm{C}$ is

1 $-5.39 \mathrm{~kJ}$
2 $539 \mathrm{~kJ}$
3 $5.39 \mathrm{~kJ}$
4 $-539 \mathrm{~kJ}$
Thermodynamics

273057 The equilibrium constant of a reaction is 0.008 at $298 \mathrm{~K}$. The standard free energy change of the reaction at the same temperature is

1 $+11.96 \mathrm{~kJ}$
2 $-11.96 \mathrm{~kJ}$
3 $-5.43 \mathrm{~kJ}$
4 $-8.46 \mathrm{~kJ}$
Thermodynamics

273082 The incorrect match in the following is

1 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}>1$
2 $\Delta \mathrm{G}^{\circ}=0, \mathrm{~K}=1$
3 $\Delta \mathrm{G}^{\circ}>0, \mathrm{~K}<1$
4 $\Delta \mathrm{G}^{\circ}<0, \mathrm{~K}<1$
Thermodynamics

273053 Standard entropies of $X_2, Y_2$ and $X Y_3$ are 60 , 40 and $50 / \mathrm{K} /$ mol respectively. At what temperature the following reaction will be at equilibrium.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{Y}_{\mathbf{2}}$ ? $\mathbf{X Y}_3, \Delta \mathbf{H}=-\mathbf{3 0} \mathrm{kJ}$

1 $500 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $1000 \mathrm{~K}$
4 $1250 \mathrm{~K}$
Thermodynamics

273054 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 0.36
Thermodynamics

273056 The standard enthalpy of the decomposition of $\mathrm{N}_2 \mathrm{O}_4$ to $\mathrm{NO}_2$ is $58.04 \mathrm{~kJ}$ and standard entropy of this reaction is $176.7 \mathrm{~J} / \mathrm{K}$. Therefore the standard free energy changes for this reaction at $25^{\circ} \mathrm{C}$ is

1 $-5.39 \mathrm{~kJ}$
2 $539 \mathrm{~kJ}$
3 $5.39 \mathrm{~kJ}$
4 $-539 \mathrm{~kJ}$
Thermodynamics

273057 The equilibrium constant of a reaction is 0.008 at $298 \mathrm{~K}$. The standard free energy change of the reaction at the same temperature is

1 $+11.96 \mathrm{~kJ}$
2 $-11.96 \mathrm{~kJ}$
3 $-5.43 \mathrm{~kJ}$
4 $-8.46 \mathrm{~kJ}$