273048 If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$, and $\mathrm{H}-$ $B r$ are 433,192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the $\Delta \mathrm{H}^0$ for the reaction $\mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{HBr}(\mathrm{g})$ is
273049 Given that bond energies of \(\mathrm{H}-\mathrm{H}\) and \(\mathrm{Cl}-\mathrm{Cl}\) are \(430 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(240 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively and \(\Delta \mathrm{H}_{\mathrm{f}}\) for \(\mathrm{HCl}\) is \(-90 \mathrm{~kJ} \mathrm{~mol}^{-1}\), bond enthalpy of \(\mathrm{HCl}\) is
273050
For the reaction
$\mathbf{A}(\mathrm{g})+2 \mathbf{B}(\mathrm{g}) \longrightarrow 2 \mathbf{C}(\mathrm{g})-\mathbf{3 D}(\mathrm{g})$
the change of enthalpy at $27^{\circ} \mathrm{C}$ is 19 kcal. The value of $\Delta E$ is: $\left(R=2.02 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
273048 If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$, and $\mathrm{H}-$ $B r$ are 433,192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the $\Delta \mathrm{H}^0$ for the reaction $\mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{HBr}(\mathrm{g})$ is
273049 Given that bond energies of \(\mathrm{H}-\mathrm{H}\) and \(\mathrm{Cl}-\mathrm{Cl}\) are \(430 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(240 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively and \(\Delta \mathrm{H}_{\mathrm{f}}\) for \(\mathrm{HCl}\) is \(-90 \mathrm{~kJ} \mathrm{~mol}^{-1}\), bond enthalpy of \(\mathrm{HCl}\) is
273050
For the reaction
$\mathbf{A}(\mathrm{g})+2 \mathbf{B}(\mathrm{g}) \longrightarrow 2 \mathbf{C}(\mathrm{g})-\mathbf{3 D}(\mathrm{g})$
the change of enthalpy at $27^{\circ} \mathrm{C}$ is 19 kcal. The value of $\Delta E$ is: $\left(R=2.02 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
273048 If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$, and $\mathrm{H}-$ $B r$ are 433,192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the $\Delta \mathrm{H}^0$ for the reaction $\mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{HBr}(\mathrm{g})$ is
273049 Given that bond energies of \(\mathrm{H}-\mathrm{H}\) and \(\mathrm{Cl}-\mathrm{Cl}\) are \(430 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(240 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively and \(\Delta \mathrm{H}_{\mathrm{f}}\) for \(\mathrm{HCl}\) is \(-90 \mathrm{~kJ} \mathrm{~mol}^{-1}\), bond enthalpy of \(\mathrm{HCl}\) is
273050
For the reaction
$\mathbf{A}(\mathrm{g})+2 \mathbf{B}(\mathrm{g}) \longrightarrow 2 \mathbf{C}(\mathrm{g})-\mathbf{3 D}(\mathrm{g})$
the change of enthalpy at $27^{\circ} \mathrm{C}$ is 19 kcal. The value of $\Delta E$ is: $\left(R=2.02 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
273048 If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$, and $\mathrm{H}-$ $B r$ are 433,192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the $\Delta \mathrm{H}^0$ for the reaction $\mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{HBr}(\mathrm{g})$ is
273049 Given that bond energies of \(\mathrm{H}-\mathrm{H}\) and \(\mathrm{Cl}-\mathrm{Cl}\) are \(430 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(240 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively and \(\Delta \mathrm{H}_{\mathrm{f}}\) for \(\mathrm{HCl}\) is \(-90 \mathrm{~kJ} \mathrm{~mol}^{-1}\), bond enthalpy of \(\mathrm{HCl}\) is
273050
For the reaction
$\mathbf{A}(\mathrm{g})+2 \mathbf{B}(\mathrm{g}) \longrightarrow 2 \mathbf{C}(\mathrm{g})-\mathbf{3 D}(\mathrm{g})$
the change of enthalpy at $27^{\circ} \mathrm{C}$ is 19 kcal. The value of $\Delta E$ is: $\left(R=2.02 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$