02. Second Law of Thermodynamics and Entropy
Thermodynamics

272739 Calculate the change of entropy for the process, water (liquid) to water (vapour) involving $\Delta \mathrm{H}_{\text {rap }}=40850 \mathrm{~J} \mathrm{~mol}^{-1}$ at $373 \mathrm{~K}$.

1 $\Delta \mathrm{S}_{\text {vap }}=98.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{S}_{\text {vap }}=109.52 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{S}_{\text {vap }}=89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4 $\Delta S_{\text {vap }}=72 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272740 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta \mathrm{H}=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 -2.44
Thermodynamics

272741 What is the entropy change in $\mathrm{JK}^{-1}$ during the melting of $27.3 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$ ? (Latent heat of fusion of ice $=330 \mathrm{Jg}^{-1}$ )

1 330
2 12.1
3 3.3
4 33
Thermodynamics

272743 The enthalpy of vaporization of a liquid is 35.2 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $110.6^{\circ} \mathrm{C}$. The entropy change for the process will be

1 $9.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $31.83 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $91.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $318.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272744 Enthalpy change when lg water is frozen at $0^{\circ} \mathrm{C}$ is :
$\left(\Delta \mathrm{H}_{\text {fus }}=1.435 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

1 $0.0797 \mathrm{kcal}$
2 $-0.0797 \mathrm{kcal}$
3 $1.435 \mathrm{kcal}$
4 $-1.435 \mathrm{kcal}$
Thermodynamics

272739 Calculate the change of entropy for the process, water (liquid) to water (vapour) involving $\Delta \mathrm{H}_{\text {rap }}=40850 \mathrm{~J} \mathrm{~mol}^{-1}$ at $373 \mathrm{~K}$.

1 $\Delta \mathrm{S}_{\text {vap }}=98.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{S}_{\text {vap }}=109.52 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{S}_{\text {vap }}=89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4 $\Delta S_{\text {vap }}=72 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272740 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta \mathrm{H}=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 -2.44
Thermodynamics

272741 What is the entropy change in $\mathrm{JK}^{-1}$ during the melting of $27.3 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$ ? (Latent heat of fusion of ice $=330 \mathrm{Jg}^{-1}$ )

1 330
2 12.1
3 3.3
4 33
Thermodynamics

272743 The enthalpy of vaporization of a liquid is 35.2 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $110.6^{\circ} \mathrm{C}$. The entropy change for the process will be

1 $9.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $31.83 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $91.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $318.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272744 Enthalpy change when lg water is frozen at $0^{\circ} \mathrm{C}$ is :
$\left(\Delta \mathrm{H}_{\text {fus }}=1.435 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

1 $0.0797 \mathrm{kcal}$
2 $-0.0797 \mathrm{kcal}$
3 $1.435 \mathrm{kcal}$
4 $-1.435 \mathrm{kcal}$
Thermodynamics

272739 Calculate the change of entropy for the process, water (liquid) to water (vapour) involving $\Delta \mathrm{H}_{\text {rap }}=40850 \mathrm{~J} \mathrm{~mol}^{-1}$ at $373 \mathrm{~K}$.

1 $\Delta \mathrm{S}_{\text {vap }}=98.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{S}_{\text {vap }}=109.52 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{S}_{\text {vap }}=89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4 $\Delta S_{\text {vap }}=72 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272740 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta \mathrm{H}=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 -2.44
Thermodynamics

272741 What is the entropy change in $\mathrm{JK}^{-1}$ during the melting of $27.3 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$ ? (Latent heat of fusion of ice $=330 \mathrm{Jg}^{-1}$ )

1 330
2 12.1
3 3.3
4 33
Thermodynamics

272743 The enthalpy of vaporization of a liquid is 35.2 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $110.6^{\circ} \mathrm{C}$. The entropy change for the process will be

1 $9.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $31.83 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $91.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $318.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272744 Enthalpy change when lg water is frozen at $0^{\circ} \mathrm{C}$ is :
$\left(\Delta \mathrm{H}_{\text {fus }}=1.435 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

1 $0.0797 \mathrm{kcal}$
2 $-0.0797 \mathrm{kcal}$
3 $1.435 \mathrm{kcal}$
4 $-1.435 \mathrm{kcal}$
Thermodynamics

272739 Calculate the change of entropy for the process, water (liquid) to water (vapour) involving $\Delta \mathrm{H}_{\text {rap }}=40850 \mathrm{~J} \mathrm{~mol}^{-1}$ at $373 \mathrm{~K}$.

1 $\Delta \mathrm{S}_{\text {vap }}=98.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{S}_{\text {vap }}=109.52 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{S}_{\text {vap }}=89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4 $\Delta S_{\text {vap }}=72 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272740 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta \mathrm{H}=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 -2.44
Thermodynamics

272741 What is the entropy change in $\mathrm{JK}^{-1}$ during the melting of $27.3 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$ ? (Latent heat of fusion of ice $=330 \mathrm{Jg}^{-1}$ )

1 330
2 12.1
3 3.3
4 33
Thermodynamics

272743 The enthalpy of vaporization of a liquid is 35.2 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $110.6^{\circ} \mathrm{C}$. The entropy change for the process will be

1 $9.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $31.83 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $91.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $318.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272744 Enthalpy change when lg water is frozen at $0^{\circ} \mathrm{C}$ is :
$\left(\Delta \mathrm{H}_{\text {fus }}=1.435 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

1 $0.0797 \mathrm{kcal}$
2 $-0.0797 \mathrm{kcal}$
3 $1.435 \mathrm{kcal}$
4 $-1.435 \mathrm{kcal}$
Thermodynamics

272739 Calculate the change of entropy for the process, water (liquid) to water (vapour) involving $\Delta \mathrm{H}_{\text {rap }}=40850 \mathrm{~J} \mathrm{~mol}^{-1}$ at $373 \mathrm{~K}$.

1 $\Delta \mathrm{S}_{\text {vap }}=98.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{S}_{\text {vap }}=109.52 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{S}_{\text {vap }}=89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4 $\Delta S_{\text {vap }}=72 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272740 The temperature of $K$ at which $\Delta G=0$, for a given reaction with $\Delta \mathrm{H}=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S$ $=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is

1 -410
2 410
3 2.44
4 -2.44
Thermodynamics

272741 What is the entropy change in $\mathrm{JK}^{-1}$ during the melting of $27.3 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$ ? (Latent heat of fusion of ice $=330 \mathrm{Jg}^{-1}$ )

1 330
2 12.1
3 3.3
4 33
Thermodynamics

272743 The enthalpy of vaporization of a liquid is 35.2 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $110.6^{\circ} \mathrm{C}$. The entropy change for the process will be

1 $9.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $31.83 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $91.76 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $318.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272744 Enthalpy change when lg water is frozen at $0^{\circ} \mathrm{C}$ is :
$\left(\Delta \mathrm{H}_{\text {fus }}=1.435 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

1 $0.0797 \mathrm{kcal}$
2 $-0.0797 \mathrm{kcal}$
3 $1.435 \mathrm{kcal}$
4 $-1.435 \mathrm{kcal}$